pytorch 自定义数据集加载方法

pytorch 官网给出的例子中都是使用了已经定义好的特殊数据集接口来加载数据,而且其使用的数据都是官方给出的数据。如果我们有自己收集的数据集,如何用来训练网络呢?此时需要我们自己定义好数据处理接口。幸运的是pytroch给出了一个数据集接口类(torch.utils.data.Dataset),可以方便我们继承并实现自己的数据集接口。

torch.utils.data

torch的这个文件包含了一些关于数据集处理的类。

class torch.utils.data.Dataset: 一个抽象类, 所有其他类的数据集类都应该是它的子类。而且其子类必须重载两个重要的函数:len(提供数据集的大小)、getitem(支持整数索引)。

class torch.utils.data.TensorDataset: 封装成tensor的数据集,每一个样本都通过索引张量来获得。

class torch.utils.data.ConcatDataset: 连接不同的数据集以构成更大的新数据集。

class torch.utils.data.Subset(dataset, indices): 获取指定一个索引序列对应的子数据集。

class torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=False, sampler=None, batch_sampler=None, num_workers=0, collate_fn=<function default_collate>, pin_memory=False, drop_last=False, timeout=0, worker_init_fn=None): 数据加载器。组合了一个数据集和采样器,并提供关于数据的迭代器。

torch.utils.data.random_split(dataset, lengths): 按照给定的长度将数据集划分成没有重叠的新数据集组合。

class torch.utils.data.Sampler(data_source):所有采样的器的基类。每个采样器子类都需要提供 __iter__ 方法以方便迭代器进行索引 和一个 len方法 以方便返回迭代器的长度。

class torch.utils.data.SequentialSampler(data_source):顺序采样样本,始终按照同一个顺序。

class torch.utils.data.RandomSampler(data_source):无放回地随机采样样本元素。

class torch.utils.data.SubsetRandomSampler(indices):无放回地按照给定的索引列表采样样本元素。

class torch.utils.data.WeightedRandomSampler(weights, num_samples, replacement=True): 按照给定的概率来采样样本。

class torch.utils.data.BatchSampler(sampler, batch_size, drop_last): 在一个batch中封装一个其他的采样器。

class torch.utils.data.distributed.DistributedSampler(dataset, num_replicas=None, rank=None):采样器可以约束数据加载进数据集的子集。

自定义数据集

自己定义的数据集需要继承抽象类class torch.utils.data.Dataset,并且需要重载两个重要的函数:__len__ 和__getitem__。

整个代码仅供参考。在__init__中是初始化了该类的一些基本参数;__getitem__中是真正读取数据的地方,迭代器通过索引来读取数据集中数据,因此只需要这一个方法中加入读取数据的相关功能即可;__len__给出了整个数据集的尺寸大小,迭代器的索引范围是根据这个函数得来的。

import torch

class myDataset(torch.nn.data.Dataset):
 def __init__(self, dataSource)
  self.dataSource = dataSource

 def __getitem__(self, index):
  element = self.dataSource[index]
  return element
 def __len__(self):
  return len(self.dataSource)

train_data = myDataset(dataSource)

自定义数据集加载器

class torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=False, sampler=None, batch_sampler=None, num_workers=0, collate_fn=<function default_collate>, pin_memory=False, drop_last=False, timeout=0, worker_init_fn=None): 数据加载器。组合了一个数据集和采样器,并提供关于数据的迭代器。

dataset (Dataset) – 需要加载的数据集(可以是自定义或者自带的数据集)。

batch_size – batch的大小(可选项,默认值为1)。

shuffle – 是否在每个epoch中shuffle整个数据集, 默认值为False。

sampler – 定义从数据中抽取样本的策略. 如果指定了, shuffle参数必须为False。

num_workers – 表示读取样本的线程数, 0表示只有主线程。

collate_fn – 合并一个样本列表称为一个batch。

pin_memory – 是否在返回数据之前将张量拷贝到CUDA。

drop_last (bool, optional) – 设置是否丢弃最后一个不完整的batch,默认为False。

timeout – 用来设置数据读取的超时时间的,但超过这个时间还没读取到数据的话就会报错。应该为非负整数。

train_loader=torch.utils.data.DataLoader(dataset=train_data, batch_size=64, shuffle=True)

以上这篇pytorch 自定义数据集加载方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • pytorch + visdom CNN处理自建图片数据集的方法

    环境 系统:win10 cpu:i7-6700HQ gpu:gtx965m python : 3.6 pytorch :0.3 数据下载 来源自Sasank Chilamkurthy 的教程: 数据:下载链接. 下载后解压放到项目根目录: 数据集为用来分类 蚂蚁和蜜蜂.有大约120个训练图像,每个类有75个验证图像. 数据导入 可以使用 torchvision.datasets.ImageFolder(root,transforms) 模块 可以将 图片转换为 tensor. 先定义transf

  • pytorch 数据集图片显示方法

    图片显示 pytorch 载入的数据集是元组tuple 形式,里面包括了数据及标签(train_data,label),其中的train_data数据可以转换为torch.Tensor形式,方便后面计算使用. 同样给一些刚入门的同学在使用载入的数据显示图片的时候带来一些难以理解的地方,这里主要是将Tensor与numpy转换的过程,理解了这些就可以就行转换了 CIAFA10数据集 首先载入数据集,这里做了一些数据处理,包括图片尺寸.数据归一化等 import torch from torch.a

  • pytorch 把MNIST数据集转换成图片和txt的方法

    本文介绍了pytorch 把MNIST数据集转换成图片和txt的方法,分享给大家,具体如下: 1.下载Mnist 数据集 import os # third-party library import torch import torch.nn as nn from torch.autograd import Variable import torch.utils.data as Data import torchvision import matplotlib.pyplot as plt # t

  • PyTorch读取Cifar数据集并显示图片的实例讲解

    首先了解一下需要的几个类所在的package from torchvision import transforms, datasets as ds from torch.utils.data import DataLoader import matplotlib.pyplot as plt import numpy as np #transform = transforms.Compose是把一系列图片操作组合起来,比如减去像素均值等. #DataLoader读入的数据类型是PIL.Image

  • 详解PyTorch手写数字识别(MNIST数据集)

    MNIST 手写数字识别是一个比较简单的入门项目,相当于深度学习中的 Hello World,可以让我们快速了解构建神经网络的大致过程.虽然网上的案例比较多,但还是要自己实现一遍.代码采用 PyTorch 1.0 编写并运行. 导入相关库 import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets, t

  • pytorch中如何使用DataLoader对数据集进行批处理的方法

    最近搞了搞minist手写数据集的神经网络搭建,一个数据集里面很多个数据,不能一次喂入,所以需要分成一小块一小块喂入搭建好的网络. pytorch中有很方便的dataloader函数来方便我们进行批处理,做了简单的例子,过程很简单,就像把大象装进冰箱里一共需要几步? 第一步:打开冰箱门. 我们要创建torch能够识别的数据集类型(pytorch中也有很多现成的数据集类型,以后再说). 首先我们建立两个向量X和Y,一个作为输入的数据,一个作为正确的结果: 随后我们需要把X和Y组成一个完整的数据集,

  • pytorch 自定义数据集加载方法

    pytorch 官网给出的例子中都是使用了已经定义好的特殊数据集接口来加载数据,而且其使用的数据都是官方给出的数据.如果我们有自己收集的数据集,如何用来训练网络呢?此时需要我们自己定义好数据处理接口.幸运的是pytroch给出了一个数据集接口类(torch.utils.data.Dataset),可以方便我们继承并实现自己的数据集接口. torch.utils.data torch的这个文件包含了一些关于数据集处理的类. class torch.utils.data.Dataset: 一个抽象类

  • python机器学习pytorch自定义数据加载器

    目录 正文 1. 加载数据集 2. 迭代和可视化数据集 3.创建自定义数据集 3.1 __init__ 3.2 __len__ 3.3 __getitem__ 4. 使用 DataLoaders 为训练准备数据 5.遍历 DataLoader 正文 处理数据样本的代码可能会逐渐变得混乱且难以维护:理想情况下,我们希望我们的数据集代码与我们的模型训练代码分离,以获得更好的可读性和模块化.PyTorch 提供了两个数据原语:torch.utils.data.DataLoader和torch.util

  • PyTorch模型的保存与加载方法实例

    目录 模型的保存与加载 保存和加载模型参数 保存和加载模型参数与结构 总结 模型的保存与加载 首先,需要导入两个包 import torch import torchvision.models as models 保存和加载模型参数 PyTorch模型将学习到的参数存储在一个内部状态字典中,叫做state_dict.这可以通过torch.save方法来实现.我们导入预训练好的VGG16模型,并将其保存.我们将state_dict字典保存在model_weights.pth文件中. model =

  • JS实现的自定义显示加载等待图片插件(loading.gif)

    本文实例讲述了JS实现的自定义显示加载等待图片插件.分享给大家供大家参考,具体如下: 在工作中遇到了一个问题 -- 某个业务流程分为几个阶段,每个阶段如果在数据没有显示出来之前就要显示加载图片loading.gif文件,如果有数据了就消失.为此,自己写了一个方法,方便整个工程使用. <button onclick="show()">show</button> <button onclick="hide()">hide</bu

  • Android开发实现自定义新闻加载页面功能实例

    本文实例讲述了Android开发实现自定义新闻加载页面功能.分享给大家供大家参考,具体如下: 一.概述: 1.效果演示: 2.说明:在新闻页面刚加载的时候,一般会出现五种状态 未知状态(STATE_UNKNOW).空状态(STATE_EMPTY).加载中(STATE_LOADING).错误(STATE_ERROT).成功(STATE_SUCCESS) 因为每个Detail页面都会出现,所以我们可以把他们封装成一个LoadPage的自定义view,可以复用 二.实现: 1.首先的定义三个布局,为什

  • Adnroid 自定义ProgressDialog加载中(加载圈)

    前两天在做项目的时候发现有时候在访问网络数据的时候由于后台要做的工作较多,给我们返回数据的时间较长,所以老大叫我加了一个加载中的logo图用来提高用户体验. 于是就在网上找了许多大神写的案例,再结合自己的情况完成了一个Loading工具类 效果: ok,现在来说说怎么做的 先自定义一个类继承ProgressDialog public class Loading_view extends ProgressDialog { public Loading_view(Context context) {

  • pytorch自定义初始化权重的方法

    在常见的pytorch代码中,我们见到的初始化方式都是调用init类对每层所有参数进行初始化.但是,有时我们有些特殊需求,比如用某一层的权重取优化其它层,或者手动指定某些权重的初始值. 核心思想就是构造和该层权重同一尺寸的矩阵去对该层权重赋值.但是,值得注意的是,pytorch中各层权重的数据类型是nn.Parameter,而不是Tensor或者Variable. import torch import torch.nn as nn import torch.optim as optim imp

  • android自定义波浪加载动画的实现代码

    本文实例为大家分享了android自定义波浪加载动画的具体代码,供大家参考,具体内容如下 效果图 1.自定义控件 WaveView package com.example.wh.myapplication; import android.content.Context; import android.content.res.TypedArray; import android.graphics.Canvas; import android.graphics.Color; import andro

  • PyTorch使用cpu加载模型运算方式

    没gpu没cuda支持的时候加载模型到cpu上计算 将 model = torch.load(path, map_location=lambda storage, loc: storage.cuda(device)) 改为 model = torch.load(path, map_location='cpu') 然后删掉所有变量后面的.cuda()方法 以上这篇PyTorch使用cpu加载模型运算方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.

  • SpringBoot配置文件加载方法详细讲解

    目录 配置文件的读取顺序 多坏境的配置文件 个性化配置 自定义配置文件名称和路径 加载yml文件 配置文件的读取顺序 根目录/config/application.properties 根目录/config/application.yml 根目录/application.properties 根目录/application.yml classpath目录/config/application.properties classpath目录/config/application.yml classp

随机推荐