python开启摄像头以及深度学习实现目标检测方法

最近想做实时目标检测,需要用到python开启摄像头,我手上只有两个uvc免驱的摄像头,性能一般。利用python开启摄像头费了一番功夫,主要原因是我的摄像头都不能用cv2的VideCapture打开,这让我联想到原来opencv也打不开Android手机上的摄像头(后来采用QML的Camera模块实现的)。看来opencv对于摄像头的兼容性仍然不是很完善。

我尝了几种办法:v4l2,v4l2_capture以及simpleCV,都打不开。最后采用pygame实现了摄像头的采集功能,这里直接给大家分享具体实现代码(python3.6,cv2,opencv3.3,ubuntu16.04)。中间注释的部分是我上述方法打开摄像头的尝试,说不定有适合自己的。

import pygame.camera
import time
import pygame
import cv2
import numpy as np

def surface_to_string(surface):
 """convert pygame surface into string"""
 return pygame.image.tostring(surface, 'RGB')

def pygame_to_cvimage(surface):
 """conver pygame surface into cvimage"""

 #cv_image = np.zeros(surface.get_size, np.uint8, 3)
 image_string = surface_to_string(surface)
 image_np = np.fromstring(image_string, np.uint8).reshape(480, 640, 3)
 frame = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB)
 return image_np, frame

pygame.camera.init()
pygame.camera.list_cameras()
cam = pygame.camera.Camera("/dev/video0", [640, 480])

cam.start()
time.sleep(0.1)
screen = pygame.display.set_mode([640, 480])

while True:
 image = cam.get_image()

 cv_image, frame = pygame_to_cvimage(image)

 screen.fill([0, 0, 0])
 screen.blit(image, (0, 0))
 pygame.display.update()
 cv2.imshow('frame', frame)
 key = cv2.waitKey(1)
 if key & 0xFF == ord('q'):
  break

 #pygame.image.save(image, "pygame1.jpg")

cam.stop()

上述代码需要注意一个地方,就是pygame图片和opencv图片的转化(pygame_to_cvimage)有些地方采用cv.CreateImageHeader和SetData来实现,注意这两个函数在opencv3+后就消失了。因此采用numpy进行实现。

至于目标检测,由于现在网上有很多实现的方法,MobileNet等等。这里我不讲解具体原理,因为我的研究方向不是这个,这里直接把代码贴出来,亲测成功了。

from imutils.video import FPS
import argparse
import imutils

import v4l2
import fcntl

import v4l2capture
import select
import image

import pygame.camera
import pygame
import cv2
import numpy as np
import time

def surface_to_string(surface):
 """convert pygame surface into string"""
 return pygame.image.tostring(surface, 'RGB')

def pygame_to_cvimage(surface):
 """conver pygame surface into cvimage"""

 #cv_image = np.zeros(surface.get_size, np.uint8, 3)
 image_string = surface_to_string(surface)
 image_np = np.fromstring(image_string, np.uint8).reshape(480, 640, 3)
 frame = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB)
 return frame

ap = argparse.ArgumentParser()
ap.add_argument("-p", "--prototxt", required=True, help="path to caffe deploy prototxt file")
ap.add_argument("-m", "--model", required=True, help="path to caffe pretrained model")
ap.add_argument("-c", "--confidence", type=float, default=0.2, help="minimum probability to filter weak detection")
args = vars(ap.parse_args())

CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow",
   "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]
COLORS = np.random.uniform(0, 255, size=(len(CLASSES), 3))

print("[INFO] loading model...")
net = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"])

print("[INFO] starting video stream ...")

###### opencv ########
#vs = VideoStream(src=1).start()
#
#camera = cv2.VideoCapture(0)
#if not camera.isOpened():
# print("camera is not open")
#time.sleep(2.0)

###### v4l2 ########

#vd = open('/dev/video0', 'r')
#cp = v4l2.v4l2_capability()
#fcntl.ioctl(vd, v4l2.VIDIOC_QUERYCAP, cp)

#cp.driver

##### v4l2_capture
#video = v4l2capture.Video_device("/dev/video0")
#size_x, size_y = video.set_format(640, 480, fourcc= 'MJPEG')
#video.create_buffers(30)

#video.queue_all_buffers()

#video.start()

##### pygame ####
pygame.camera.init()
pygame.camera.list_cameras()
cam = pygame.camera.Camera("/dev/video0", [640, 480])

cam.start()
time.sleep(1)

fps = FPS().start()

while True:
 #try:
 # frame = vs.read()
 #except:
 # print("camera is not opened")

 #frame = imutils.resize(frame, width=400)
 #(h, w) = frame.shape[:2]

 #grabbed, frame = camera.read()
 #if not grabbed:
 # break
 #select.select((video,), (), ())
 #frame = video.read_and_queue()

 #npfs = np.frombuffer(frame, dtype=np.uint8)
 #print(len(npfs))
 #frame = cv2.imdecode(npfs, cv2.IMREAD_COLOR)

 image = cam.get_image()
 frame = pygame_to_cvimage(image)

 frame = imutils.resize(frame, width=640)
 blob = cv2.dnn.blobFromImage(frame, 0.00783, (640, 480), 127.5)

 net.setInput(blob)
 detections = net.forward()

 for i in np.arange(0, detections.shape[2]):

  confidence = detections[0, 0, i, 2]

  if confidence > args["confidence"]:

   idx = int(detections[0, 0, i, 1])
   box = detections[0, 0, i, 3:7]*np.array([640, 480, 640, 480])
   (startX, startY, endX, endY) = box.astype("int")

   label = "{}:{:.2f}%".format(CLASSES[idx], confidence*100)
   cv2.rectangle(frame, (startX, startY), (endX, endY), COLORS[idx], 2)
   y = startY - 15 if startY - 15 > 15 else startY + 15

   cv2.putText(frame, label, (startX, y), cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[idx], 2)

 cv2.imshow("Frame", frame)
 key = cv2.waitKey(1)& 0xFF

 if key ==ord("q"):
  break

fps.stop()
print("[INFO] elapsed time :{:.2f}".format(fps.elapsed()))
print("[INFO] approx. FPS :{:.2f}".format(fps.fps()))

cv2.destroyAllWindows()

#vs.stop()

上面的实现需要用到两个文件,是caffe实现好的模型,我直接上传(文件名为MobileNetSSD_deploy.caffemodel和MobileNetSSD_deploy.prototxt,上google能够下载到)。

以上这篇python开启摄像头以及深度学习实现目标检测方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • 10 行Python 代码实现 AI 目标检测技术【推荐】

    只需10行Python代码,我们就能实现计算机视觉中目标检测. from imageai.Detection import ObjectDetection import os execution_path = os.getcwd() detector = ObjectDetection() detector.setModelTypeAsRetinaNet() detector.setModelPath( os.path.join(execution_path , "resnet50_coco_b

  • python opencv检测目标颜色的实例讲解

    实例如下所示: # -*- coding:utf-8 -*- __author__ = 'kingking' __version__ = '1.0' __date__ = '14/07/2017' import cv2 import numpy as np import time if __name__ == '__main__': Img = cv2.imread('example.png')#读入一幅图像 kernel_2 = np.ones((2,2),np.uint8)#2x2的卷积核

  • Python+OpenCV目标跟踪实现基本的运动检测

    目标跟踪是对摄像头视频中的移动目标进行定位的过程,有着非常广泛的应用.实时目标跟踪是许多计算机视觉应用的重要任务,如监控.基于感知的用户界面.增强现实.基于对象的视频压缩以及辅助驾驶等. 有很多实现视频目标跟踪的方法,当跟踪所有移动目标时,帧之间的差异会变的有用:当跟踪视频中移动的手时,基于皮肤颜色的均值漂移方法是最好的解决方案:当知道跟踪对象的一方面时,模板匹配是不错的技术. 本文代码是做一个基本的运动检测 考虑的是"背景帧"与其它帧之间的差异 这种方法检测结果还是挺不错的,但是需要

  • Python Opencv任意形状目标检测并绘制框图

    opencv 进行任意形状目标识别,供大家参考,具体内容如下 工作中有一次需要在简单的图上进行目标识别,目标的形状不固定,并且存在一定程度上的噪声影响,但是噪声影响不确定.这是一个简单的事情,因为图像并不复杂,现在将代码公布如下: import cv2 def otsu_seg(img): ret_th, bin_img = cv2.threshold(img, 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU) return ret_th, bin_img d

  • python+opencv+caffe+摄像头做目标检测的实例代码

    首先之前已经成功的使用Python做图像的目标检测,这回因为项目最终是需要用摄像头的, 所以实现摄像头获取图像,并且用Python调用CAFFE接口来实现目标识别 首先是摄像头请选择支持Linux万能驱动兼容V4L2的摄像头, 因为之前用学ARM的时候使用的Smart210,我已经确认我的摄像头是支持的, 我把摄像头插上之後自然就在 /dev 目录下看到多了一个video0的文件, 这个就是摄像头的设备文件了,所以我就没有额外处理驱动的部分 一.检测环境 再来在开始前因为之前按着国嵌的指导手册安

  • python开启摄像头以及深度学习实现目标检测方法

    最近想做实时目标检测,需要用到python开启摄像头,我手上只有两个uvc免驱的摄像头,性能一般.利用python开启摄像头费了一番功夫,主要原因是我的摄像头都不能用cv2的VideCapture打开,这让我联想到原来opencv也打不开Android手机上的摄像头(后来采用QML的Camera模块实现的).看来opencv对于摄像头的兼容性仍然不是很完善. 我尝了几种办法:v4l2,v4l2_capture以及simpleCV,都打不开.最后采用pygame实现了摄像头的采集功能,这里直接给大

  • 使用Python中OpenCV和深度学习进行全面嵌套边缘检测

    这篇博客将介绍如何使用OpenCV和深度学习应用全面嵌套的边缘检测.并将对图像和视频流应用全面嵌套边缘检测,然后将结果与OpenCV的标准Canny边缘检测器进行比较. 1. 效果图 愤怒的小鸟--原始图 VS Canny边缘检测图 VS HED边缘检测图 花朵--原始图 VS Canny边缘检测图 VS HED边缘检测图 视频效果图GIF 如下 2. 全面嵌套边缘检测与Canny边缘检测 2.1 Hed与Canny边缘检测对比 Holistically-Nested Edge Detectio

  • Python机器学习算法库scikit-learn学习之决策树实现方法详解

    本文实例讲述了Python机器学习算法库scikit-learn学习之决策树实现方法.分享给大家供大家参考,具体如下: 决策树 决策树(DTs)是一种用于分类和回归的非参数监督学习方法.目标是创建一个模型,通过从数据特性中推导出简单的决策规则来预测目标变量的值. 例如,在下面的例子中,决策树通过一组if-then-else决策规则从数据中学习到近似正弦曲线的情况.树越深,决策规则越复杂,模型也越合适. 决策树的一些优势是: 便于说明和理解,树可以可视化表达: 需要很少的数据准备.其他技术通常需要

  • Dlib+OpenCV深度学习人脸识别的方法示例

    前言 人脸识别在LWF(Labeled Faces in the Wild)数据集上人脸识别率现在已经99.7%以上,这个识别率确实非常高了,但是真实的环境中的准确率有多少呢?我没有这方面的数据,但是可以确信的是真实环境中的识别率并没有那么乐观.现在虽然有一些商业应用如员工人脸识别管理系统.海关身份验证系统.甚至是银行人脸识别功能,但是我们可以仔细想想员工人脸识别管理,海关身份证系统的应用场景对身份的验证功能其实并没有商家吹嘘的那么重要,打个比方说员工上班的时候刷脸如果失败了会怎样,是不是重新识

  • 基于深度学习和OpenCV实现目标检测

    目录 使用深度学习和 OpenCV 进行目标检测 MobileNets:高效(深度)神经网络 使用 OpenCV 进行基于深度学习的对象检测 使用 OpenCV 检测视频 使用深度学习和 OpenCV 进行目标检测 基于深度学习的对象检测时,您可能会遇到三种主要的对象检测方法: Faster R-CNNs (Ren et al., 2015) You Only Look Once (YOLO) (Redmon et al., 2015) Single Shot Detectors (SSD)(L

  • Python-OpenCV深度学习入门示例详解

    目录 0. 前言 1. 计算机视觉中的深度学习简介 1.1 深度学习的特点 1.2 深度学习大爆发 2. 用于图像分类的深度学习简介 3. 用于目标检测的深度学习简介 4. 深度学习框架 keras 介绍与使用 4.1 keras 库简介与安装 4.2 使用 keras 实现线性回归模型 4.3 使用 keras 进行手写数字识别 小结 0. 前言 深度学习已经成为机器学习中最受欢迎和发展最快的领域.自 2012 年深度学习性能超越机器学习等传统方法以来,深度学习架构开始快速应用于包括计算机视觉

  • opencv调用yolov3模型深度学习目标检测实例详解

    目录 引言 建立相关目录 代码详解 附源代码 引言 opencv调用yolov3模型进行深度学习目标检测,以实例进行代码详解 对于yolo v3已经训练好的模型,opencv提供了加载相关文件,进行图片检测的类dnn. 下面对怎么通过opencv调用yolov3模型进行目标检测方法进行详解,付源代码 建立相关目录 在训练结果backup文件夹下,找到模型权重文件,拷到win的工程文件夹下 在cfg文件夹下,找到模型配置文件,yolov3-voc.cfg拷到win的工程文件夹下 在data文件夹下

  • 利用ImageAI库只需几行python代码实现目标检测

    什么是目标检测 目标检测关注图像中特定的物体目标,需要同时解决解决定位(localization) + 识别(Recognition).相比分类,检测给出的是对图片前景和背景的理解,我们需要从背景中分离出感兴趣的目标,并确定这一目标的描述(类别和位置),因此检测模型的输出是一个列表,列表的每一项使用一个数组给出检出目标的类别和位置(常用矩形检测框的坐标表示). 通俗的说,Object Detection的目的是在目标图中将目标用一个框框出来,并且识别出这个框中的是啥,而且最好的话是能够将图片的所

  • python 窃取摄像头照片的实现示例

    python窃取摄像头照片源码+获取授权码方法+py打包成exe 教你用python做一个属于自己的窃取摄像头照片的软件. 需要安装python3.5以上版本,在官网下载即可. 然后安装库opencv-python,安装方式为打开终端输入命令行. 可以在使用pip的时候加参数-i https://pypi.tuna.tsinghua.edu.cn/simple,这样就会从清华这边的镜像去安装需要的库,会快很多. pip install opencv-python -i https://pypi.

随机推荐