TensorFlow深度学习之卷积神经网络CNN

一、卷积神经网络的概述

卷积神经网络(ConvolutionalNeural Network,CNN)最初是为解决图像识别等问题设计的,CNN现在的应用已经不限于图像和视频,也可用于时间序列信号,比如音频信号和文本数据等。CNN作为一个深度学习架构被提出的最初诉求是降低对图像数据预处理的要求,避免复杂的特征工程。在卷积神经网络中,第一个卷积层会直接接受图像像素级的输入,每一层卷积(滤波器)都会提取数据中最有效的特征,这种方法可以提取到图像中最基础的特征,而后再进行组合和抽象形成更高阶的特征,因此CNN在理论上具有对图像缩放、平移和旋转的不变性。

卷积神经网络CNN的要点就是局部连接(LocalConnection)、权值共享(Weights Sharing)和池化层(Pooling)中的降采样(Down-Sampling)。其中,局部连接和权值共享降低了参数量,使训练复杂度大大下降并减轻了过拟合。同时权值共享还赋予了卷积网络对平移的容忍性,池化层降采样则进一步降低了输出参数量并赋予模型对轻度形变的容忍性,提高了模型的泛化能力。可以把卷积层卷积操作理解为用少量参数在图像的多个位置上提取相似特征的过程。

卷积层的空间排列:上文讲解了卷积层中每个神经元与输入数据体之间的连接方式,但是尚未讨论输出数据体中神经元的数量,以及它们的排列方式。3个超参数控制着输出数据体的尺寸:深度(depth),步长(stride)和零填充(zero-padding)。首先,输出数据体的深度是一个超参数:它和使用的滤波器的数量一致,而每个滤波器在输入数据中寻找一些不同的东西。其次,在滑动滤波器的时候,必须指定步长。有时候将输入数据体用0在边缘处进行填充是很方便的。这个零填充(zero-padding)的尺寸是一个超参数。零填充有一个良好性质,即可以控制输出数据体的空间尺寸(最常用的是用来保持输入数据体在空间上的尺寸,这样输入和输出的宽高都相等)。输出数据体在空间上的尺寸可以通过输入数据体尺寸(W),卷积层中神经元的感受野尺寸(F),步长(S)和零填充的数量(P)的函数来计算。(这里假设输入数组的空间形状是正方形,即高度和宽度相等)输出数据体的空间尺寸为(W-F +2P)/S+1,在计算上,输入数据体的长和宽按照该公式计算,深度依赖于滤波器的数量。步长的限制:注意这些空间排列的超参数之间是相互限制的。举例说来,当输入尺寸W=10,不使用零填充则P=0,滤波器尺寸F=3,这样步长S=2就行不通,结果4.5不是整数,这就是说神经元不能整齐对称地滑过输入数据体。

汇聚层使用MAX操作,对输入数据体的每一个深度切片独立进行操作,改变它的空间尺寸。最常见的形式是汇聚层使用尺寸2x2的滤波器,以步长为2来对每个深度切片进行降采样,将其中75%的激活信息都丢掉。每个MAX操作是从4个数字中取最大值(也就是在深度切片中某个2x2的区域)。深度保持不变。

二、卷积神经网络的结构

卷积神经网络通常是由三种层构成:卷积层,汇聚层(除非特别说明,一般就是最大值汇聚)和全连接层(fully-connected简称FC)。ReLU激活函数也应该算是是一层,它逐元素地进行激活函数操作。

卷积神经网络最常见的形式就是将一些卷积层和ReLU层放在一起,其后紧跟汇聚层,然后重复如此直到图像在空间上被缩小到一个足够小的尺寸,在某个地方过渡成成全连接层也较为常见。最后的全连接层得到输出,比如分类评分等。

最常见的卷积神经网络结构如下:

INPUT -> [[CONV -> RELU]*N ->POOL?]*M -> [FC -> RELU]*K -> FC

其中*指的是重复次数,POOL?指的是一个可选的汇聚层。其中N >=0,通常N<=3,M>=0,K>=0,通常K<3。

几个小滤波器卷积层的组合比一个大滤波器卷积层好。直观说来,最好选择带有小滤波器的卷积层组合,而不是用一个带有大的滤波器的卷积层。前者可以表达出输入数据中更多个强力特征,使用的参数也更少。唯一的不足是,在进行反向传播时,中间的卷积层可能会导致占用更多的内存。

输入层(包含图像的)应该能被2整除很多次。常用数字包括32(比如CIFAR-10),64,96(比如STL-10)或224(比如ImageNet卷积神经网络),384和512。

卷积层应该使用小尺寸滤波器(比如3x3或最多5x5),使用步长S=1。还有一点非常重要,就是对输入数据进行零填充,这样卷积层就不会改变输入数据在空间维度上的尺寸。一般对于任意F,当P=(F-1)/2的时候能保持输入尺寸。如果必须使用更大的滤波器尺寸(比如7x7之类),通常只用在第一个面对原始图像的卷积层上。

汇聚层负责对输入数据的空间维度进行降采样,提升了模型的畸变容忍能力。最常用的设置是用用2x2感受野的最大值汇聚,步长为2。注意这一操作将会把输入数据中75%的激活数据丢弃(因为对宽度和高度都进行了2的降采样)。另一个不那么常用的设置是使用3x3的感受野,步长为2。最大值汇聚的感受野尺寸很少有超过3的,因为汇聚操作过于激烈,易造成数据信息丢失,这通常会导致算法性能变差。

三、CNN最大的特点在于卷积的权值共享(参数共享),可以大幅度减少神经网络的参数数量,防止过拟合的同时又降低了神经网络模型的复杂度。如何理解?

假设输入图像尺寸是1000*1000并且假定是灰度图像,即只有一个颜色通道。那么一张图片就有100万个像素点,输入维度就是100万。如果采用全连接层(Fully Connected Layer,FCL)的话,隐含层与输入层相同大小(100万个隐含层节点),那么将产生100万*100万=1万亿个连接,仅此就有1万亿个参数需要去训练,这是不可想象的。考虑到人的视觉感受野的概念,每一个感受野只接受一小块区域的信号,每一个神经元不需要接收全部像素点的信息,只需要接收局部像素点作为输入,而将所有这些神经元接收的局部信息综合起来就可以得到全局的信息。于是将之前的全连接模式修改为局部连接,假设局部感受野大小是10*10,即每个隐含节点只与10*10个像素点相连,那么现在只需要10*10*100万=1亿个连接了,相比之前的1万亿已经缩小了10000倍。假设我们的局部连接方式是卷积操作,即默认每一个隐含节点的参数都完全一样,那么我们的参数将会是10*10=100个。不论图像尺寸有多大,都是这100个参数,即卷积核的尺寸,这就是卷积对减小参数量的贡献。这也就是所谓的权值共享。我们采取增加卷积核的数量来多提取一些特征,每一个卷积核滤波得到的图像就是一类特征的映射,即一个Feature Map。一般来说,我们使用100个卷积核在第一个卷积层就足够了,这样我们有100*100=10000个参数相比之前的1亿又缩小了10000倍。卷积的好处是,不管图片尺寸如何,需要训练的参数数量只跟卷积核大小和数量有关,并且需要注意的是,尽管参数的数量大大下降了,但是我们的隐含节点的数量并没有下降,隐含节点的数量只跟卷积的步长有关系。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

您可能感兴趣的文章:

  • TensorFlow实现卷积神经网络CNN
  • TensorFlow搭建神经网络最佳实践
  • Tensorflow实现卷积神经网络用于人脸关键点识别
  • 利用TensorFlow训练简单的二分类神经网络模型的方法
  • TensorFlow实现RNN循环神经网络
  • tensorflow入门之训练简单的神经网络方法
  • TensorFlow 实战之实现卷积神经网络的实例讲解
  • tensorflow建立一个简单的神经网络的方法
  • TensorFlow神经网络优化策略学习
(0)

相关推荐

  • TensorFlow实现RNN循环神经网络

    RNN(recurrent neural Network)循环神经网络 主要用于自然语言处理(nature language processing,NLP) RNN主要用途是处理和预测序列数据 RNN广泛的用于 语音识别.语言模型.机器翻译 RNN的来源就是为了刻画一个序列当前的输出与之前的信息影响后面节点的输出 RNN 是包含循环的网络,允许信息的持久化. RNN会记忆之前的信息,并利用之前的信息影响后面节点的输出. RNN的隐藏层之间的节点是有相连的,隐藏层的输入不仅仅包括输入层的输出,还包

  • Tensorflow实现卷积神经网络用于人脸关键点识别

    今年来人工智能的概念越来越火,AlphaGo以4:1击败李世石更是起到推波助澜的作用.作为一个开挖掘机的菜鸟,深深感到不学习一下deep learning早晚要被淘汰. 既然要开始学,当然是搭一个深度神经网络跑几个数据集感受一下作为入门最直观了.自己写代码实现的话debug的过程和运行效率都会很忧伤,我也不知道怎么调用GPU- 所以还是站在巨人的肩膀上,用现成的框架吧.粗略了解一下,现在比较知名的有caffe.mxnet.tensorflow等等.选哪个呢?对我来说选择的标准就两个,第一要容易安

  • TensorFlow神经网络优化策略学习

    在神经网络模型优化的过程中,会遇到许多问题,比如如何设置学习率的问题,我们可通过指数衰减的方式让模型在训练初期快速接近较优解,在训练后期稳定进入最优解区域:针对过拟合问题,通过正则化的方法加以应对:滑动平均模型可以让最终得到的模型在未知数据上表现的更加健壮. 一.学习率的设置 学习率设置既不能过大,也不能过小.TensorFlow提供了一种更加灵活的学习率设置方法--指数衰减法.该方法实现了指数衰减学习率,先使用较大的学习率来快速得到一个比较优的解,然后随着迭代的继续逐步减小学习率,使得模型在训

  • tensorflow入门之训练简单的神经网络方法

    这几天开始学tensorflow,先来做一下学习记录 一.神经网络解决问题步骤: 1.提取问题中实体的特征向量作为神经网络的输入.也就是说要对数据集进行特征工程,然后知道每个样本的特征维度,以此来定义输入神经元的个数. 2.定义神经网络的结构,并定义如何从神经网络的输入得到输出.也就是说定义输入层,隐藏层以及输出层. 3.通过训练数据来调整神经网络中的参数取值,这是训练神经网络的过程.一般来说要定义模型的损失函数,以及参数优化的方法,如交叉熵损失函数和梯度下降法调优等. 4.利用训练好的模型预测

  • TensorFlow 实战之实现卷积神经网络的实例讲解

    本文根据最近学习TensorFlow书籍网络文章的情况,特将一些学习心得做了总结,详情如下.如有不当之处,请各位大拿多多指点,在此谢过. 一.相关性概念 1.卷积神经网络(ConvolutionNeural Network,CNN) 19世纪60年代科学家最早提出感受野(ReceptiveField).当时通过对猫视觉皮层细胞研究,科学家发现每一个视觉神经元只会处理一小块区域的视觉图像,即感受野.20世纪80年代,日本科学家提出神经认知机(Neocognitron)的概念,被视为卷积神经网络最初

  • TensorFlow搭建神经网络最佳实践

    一.TensorFLow完整样例 在MNIST数据集上,搭建一个简单神经网络结构,一个包含ReLU单元的非线性化处理的两层神经网络.在训练神经网络的时候,使用带指数衰减的学习率设置.使用正则化来避免过拟合.使用滑动平均模型来使得最终的模型更加健壮. 程序将计算神经网络前向传播的部分单独定义一个函数inference,训练部分定义一个train函数,再定义一个主函数main. 完整程序: #!/usr/bin/env python3 # -*- coding: utf-8 -*- ""&

  • TensorFlow实现卷积神经网络CNN

    一.卷积神经网络CNN简介 卷积神经网络(ConvolutionalNeuralNetwork,CNN)最初是为解决图像识别等问题设计的,CNN现在的应用已经不限于图像和视频,也可用于时间序列信号,比如音频信号和文本数据等.CNN作为一个深度学习架构被提出的最初诉求是降低对图像数据预处理的要求,避免复杂的特征工程.在卷积神经网络中,第一个卷积层会直接接受图像像素级的输入,每一层卷积(滤波器)都会提取数据中最有效的特征,这种方法可以提取到图像中最基础的特征,而后再进行组合和抽象形成更高阶的特征,因

  • 利用TensorFlow训练简单的二分类神经网络模型的方法

    利用TensorFlow实现<神经网络与机器学习>一书中4.7模式分类练习 具体问题是将如下图所示双月牙数据集分类. 使用到的工具: python3.5    tensorflow1.2.1   numpy   matplotlib 1.产生双月环数据集 def produceData(r,w,d,num): r1 = r-w/2 r2 = r+w/2 #上半圆 theta1 = np.random.uniform(0, np.pi ,num) X_Col1 = np.random.unifo

  • tensorflow建立一个简单的神经网络的方法

    本笔记目的是通过tensorflow实现一个两层的神经网络.目的是实现一个二次函数的拟合. 如何添加一层网络 代码如下: def add_layer(inputs, in_size, out_size, activation_function=None): # add one more layer and return the output of this layer Weights = tf.Variable(tf.random_normal([in_size, out_size])) bia

  • TensorFlow深度学习之卷积神经网络CNN

    一.卷积神经网络的概述 卷积神经网络(ConvolutionalNeural Network,CNN)最初是为解决图像识别等问题设计的,CNN现在的应用已经不限于图像和视频,也可用于时间序列信号,比如音频信号和文本数据等.CNN作为一个深度学习架构被提出的最初诉求是降低对图像数据预处理的要求,避免复杂的特征工程.在卷积神经网络中,第一个卷积层会直接接受图像像素级的输入,每一层卷积(滤波器)都会提取数据中最有效的特征,这种方法可以提取到图像中最基础的特征,而后再进行组合和抽象形成更高阶的特征,因此

  • Python深度学习pytorch卷积神经网络LeNet

    目录 LeNet 模型训练 在本节中,我们将介绍LeNet,它是最早发布的卷积神经网络之一.这个模型是由AT&T贝尔实验室的研究院Yann LeCun在1989年提出的(并以其命名),目的是识别手写数字.当时,LeNet取得了与支持向量机性能相媲美的成果,成为监督学习的主流方法.LeNet被广泛用于自动取款机中,帮助识别处理支票的数字. LeNet 总体来看,LeNet(LeNet-5)由两个部分组成: 卷积编码器: 由两个卷积层组成 全连接层密集快: 由三个全连接层组成 每个卷积块中的基本单元

  • Pytorch深度学习经典卷积神经网络resnet模块训练

    目录 前言 一.resnet 二.resnet网络结构 三.resnet18 1.导包 2.残差模块 2.通道数翻倍残差模块 3.rensnet18模块 4.数据测试 5.损失函数,优化器 6.加载数据集,数据增强 7.训练数据 8.保存模型 9.加载测试集数据,进行模型测试 四.resnet深层对比 前言 随着深度学习的不断发展,从开山之作Alexnet到VGG,网络结构不断优化,但是在VGG网络研究过程中,人们发现随着网络深度的不断提高,准确率却没有得到提高,如图所示: 人们觉得深度学习到此

  • Tensorflow深度学习使用CNN分类英文文本

    目录 前言 源码与数据 源码 数据 train.py 源码及分析 data_helpers.py 源码及分析 text_cnn.py 源码及分析 前言 Github源码地址 本文同时也是学习唐宇迪老师深度学习课程的一些理解与记录. 文中代码是实现在TensorFlow下使用卷积神经网络(CNN)做英文文本的分类任务(本次是垃圾邮件的二分类任务),当然垃圾邮件分类是一种应用环境,模型方法也可以推广到其它应用场景,如电商商品好评差评分类.正负面新闻等. 源码与数据 源码 - data_helpers

  • python人工智能tensorflow构建卷积神经网络CNN

    目录 简介 隐含层介绍 1.卷积层 2.池化层 3.全连接层 具体实现代码 卷积层.池化层与全连接层实现代码 全部代码 学习神经网络已经有一段时间,从普通的BP神经网络到LSTM长短期记忆网络都有一定的了解,但是从未系统的把整个神经网络的结构记录下来,我相信这些小记录可以帮助我更加深刻的理解神经网络. 简介 卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),

  • PyTorch上实现卷积神经网络CNN的方法

    一.卷积神经网络 卷积神经网络(ConvolutionalNeuralNetwork,CNN)最初是为解决图像识别等问题设计的,CNN现在的应用已经不限于图像和视频,也可用于时间序列信号,比如音频信号和文本数据等.CNN作为一个深度学习架构被提出的最初诉求是降低对图像数据预处理的要求,避免复杂的特征工程.在卷积神经网络中,第一个卷积层会直接接受图像像素级的输入,每一层卷积(滤波器)都会提取数据中最有效的特征,这种方法可以提取到图像中最基础的特征,而后再进行组合和抽象形成更高阶的特征,因此CNN在

  • python使用tensorflow深度学习识别验证码

    本文介绍了python使用tensorflow深度学习识别验证码 ,分享给大家,具体如下: 除了传统的PIL包处理图片,然后用pytessert+OCR识别意外,还可以使用tessorflow训练来识别验证码. 此篇代码大部分是转载的,只改了很少地方. 代码是运行在linux环境,tessorflow没有支持windows的python 2.7. gen_captcha.py代码. #coding=utf-8 from captcha.image import ImageCaptcha # pi

  • Numpy实现卷积神经网络(CNN)的示例

    import numpy as np import sys def conv_(img, conv_filter): filter_size = conv_filter.shape[1] result = np.zeros((img.shape)) # 循环遍历图像以应用卷积运算 for r in np.uint16(np.arange(filter_size/2.0, img.shape[0]-filter_size/2.0+1)): for c in np.uint16(np.arange(

随机推荐