Python数据分析:手把手教你用Pandas生成可视化图表的教程

大家都知道,Matplotlib 是众多 Python 可视化包的鼻祖,也是Python最常用的标准可视化库,其功能非常强大,同时也非常复杂,想要搞明白并非易事。但自从Python进入3.0时代以后,pandas的使用变得更加普及,它的身影经常见于市场分析、爬虫、金融分析以及科学计算中。

作为数据分析工具的集大成者,pandas作者曾说,pandas中的可视化功能比plt更加简便和功能强大。实际上,如果是对图表细节有极高要求,那么建议大家使用matplotlib通过底层图表模块进行编码。当然,我们大部分人在工作中是不会有这样变态的要求的,所以一句import pandas as pd就足够应付全部的可视化工作了。

下面,我们总结一下PD库的一些使用方法和入门技巧。

一、线型图

对于pandas的内置数据类型,Series 和 DataFrame 都有一个用于生成各类 图表 的 plot 方法。 默认情况下, 它们所生成的是线型图。其实Series和DataFrame上的这个功能只是使用matplotlib库的plot()方法的简单包装实现。参考以下示例代码 -

import pandas as pd
import numpy as np

df = pd.DataFrame(np.random.randn(10,4),index=pd.date_range('2018/12/18',
 periods=10), columns=list('ABCD'))

df.plot()

执行上面示例代码,得到以下结果 -

如果索引由日期组成,则调用gct().autofmt_xdate()来格式化x轴,如上图所示。

我们可以使用x和y关键字绘制一列与另一列。

s = Series( np. random. randn( 10). cumsum(), index= np. arange( 0, 100, 10))
s. plot()

pandas 的大部分绘图方法都有 一个 可选的ax参数, 它可以是一个 matplotlib 的 subplot 对象。 这使你能够在网格 布局 中 更为灵活地处理 subplot 的位置。 DataFrame的plot 方法会在 一个 subplot 中为各列绘制 一条 线, 并自动创建图例( 如图所示):

df = DataFrame( np. random. randn( 10, 4). cumsum( 0), ...: columns=[' A', 'B', 'C', 'D'], index= np. arange( 0, 100, 10)) 

df. plot() 

二、柱状图

在生成线型图的代码中加上 kind=' bar'( 垂直柱状图) 或 kind=' barh'( 水平柱状图) 即可生成柱状图。 这时,Series 和 DataFrame 的索引将会被用 作 X( bar) 或 (barh)刻度:

In [59]: fig, axes = plt. subplots( 2, 1) 

In [60]: data = Series( np. random. rand( 16), index= list(' abcdefghijklmnop')) 

In [61]: data. plot( kind=' bar', ax= axes[ 0], color=' k', alpha= 0. 7) 

Out[ 61]: < matplotlib. axes. AxesSubplot at 0x4ee7750> 

In [62]: data. plot( kind=' barh', ax= axes[ 1], color=' k', alpha= 0.

对于 DataFrame, 柱状 图 会 将 每一 行的 值 分为 一组, 如图 8- 16 所示:

In [63]: df = DataFrame( np. random. rand( 6, 4), ...: index=[' one', 'two', 'three', 'four', 'five', 'six'], ...: columns= pd. Index([' A', 'B', 'C', 'D'], name=' Genus')) 

In [64]: df 

Out[ 64]: 

Genus 

   A   B   C   D
one 0. 301686 0. 156333 0. 371943 0. 270731
two 0. 750589 0. 525587 0. 689429 0. 358974
three 0. 381504 0. 667707 0. 473772 0. 632528
four 0. 942408 0. 180186 0. 708284 0. 641783
five 0. 840278 0. 909589 0. 010041 0. 653207
six 0. 062854 0. 589813 0. 811318 0. 060217 

In [65]: df. plot( kind=' bar')

三、条形图

现在通过创建一个条形图来看看条形图是什么。条形图可以通过以下方式来创建 -

import pandas as pd
import numpy as np

df = pd.DataFrame(np.random.rand(10,4),columns=['a','b','c','d'])
df.plot.bar()

执行上面示例代码,得到以下结果 -

要生成一个堆积条形图,通过指定:pass stacked=True -

import pandas as pd
df = pd.DataFrame(np.random.rand(10,4),columns=['a','b','c','d'])
df.plot.bar(stacked=True)

执行上面示例代码,得到以下结果 -

要获得水平条形图,使用barh()方法 -

import pandas as pd
import numpy as np

df = pd.DataFrame(np.random.rand(10,4),columns=['a','b','c','d'])

df.plot.barh(stacked=True)

四、直方图

可以使用plot.hist()方法绘制直方图。我们可以指定bins的数量值。

import pandas as pd
import numpy as np

df = pd.DataFrame({'a':np.random.randn(1000)+1,'b':np.random.randn(1000),'c':
np.random.randn(1000) - 1}, columns=['a', 'b', 'c'])

df.plot.hist(bins=20)

执行上面示例代码,得到以下结果 -

要为每列绘制不同的直方图,请使用以下代码 -

import pandas as pd
import numpy as np

df=pd.DataFrame({'a':np.random.randn(1000)+1,'b':np.random.randn(1000),'c':
np.random.randn(1000) - 1}, columns=['a', 'b', 'c'])

df.hist(bins=20)

执行上面示例代码,得到以下结果 -

五、箱型图

Boxplot可以绘制调用Series.box.plot()和DataFrame.box.plot()或DataFrame.boxplot()来可视化每列中值的分布。

例如,这里是一个箱形图,表示对[0,1)上的统一随机变量的10次观察的五次试验。

import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.rand(10, 5), columns=['A', 'B', 'C', 'D', 'E'])
df.plot.box()

执行上面示例代码,得到以下结果 -

六、块型图

可以使用Series.plot.area()或DataFrame.plot.area()方法创建区域图形。

import pandas as pd
import numpy as np

df = pd.DataFrame(np.random.rand(10, 4), columns=['a', 'b', 'c', 'd'])
df.plot.area()

执行上面示例代码,得到以下结果 -

七、散点图

可以使用DataFrame.plot.scatter()方法创建散点图。

import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.rand(50, 4), columns=['a', 'b', 'c', 'd'])
df.plot.scatter(x='a', y='b')

执行上面示例代码,得到以下结果 -

八、饼状图

饼状图可以使用DataFrame.plot.pie()方法创建。

import pandas as pd
import numpy as np

df = pd.DataFrame(3 * np.random.rand(4), index=['a', 'b', 'c', 'd'], columns=['x'])
df.plot.pie(subplots=True)

执行上面示例代码,得到以下结果 -

以上这篇Python数据分析:手把手教你用Pandas生成可视化图表的教程就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • Python3.5 Pandas模块之DataFrame用法实例分析

    本文实例讲述了Python3.5 Pandas模块之DataFrame用法.分享给大家供大家参考,具体如下: 1.DataFrame的创建 (1)通过二维数组方式创建 #!/usr/bin/env python # -*- coding:utf-8 -*- # Author:ZhengzhengLiu import numpy as np import pandas as pd from pandas import Series,DataFrame #1.DataFrame通过二维数组创建 pr

  • Python中pandas模块DataFrame创建方法示例

    本文实例讲述了Python中pandas模块DataFrame创建方法.分享给大家供大家参考,具体如下: DataFrame创建 1. 通过列表创建DataFrame 2. 通过字典创建DataFrame 3. 通过Numpy数组创建DataFrame DataFrame这种列表式的数据结构和Excel工作表非常类似,其设计初衷是讲Series的使用场景由一维扩展到多维. DataFrame由按一定顺序的多列数据组成,各列的数据类型可以有所不同(数值.字符串.布尔值). Series对象的Ind

  • Python数据分析之真实IP请求Pandas详解

    前言 pandas 是基于 Numpy 构建的含有更高级数据结构和工具的数据分析包类似于 Numpy 的核心是 ndarray,pandas 也是围绕着 Series 和 DataFrame 两个核心数据结构展开的 .Series 和 DataFrame 分别对应于一维的序列和二维的表结构.pandas 约定俗成的导入方法如下: from pandas import Series,DataFrame import pandas as pd 1.1. Pandas分析步骤 1.载入日志数据 2.载

  • 浅析Python pandas模块输出每行中间省略号问题

    关于Python数据分析中pandas模块在输出的时候,每行的中间会有省略号出现,和行与行中间的省略号....问题,其他的站点(百度)中的大部分都是瞎写,根本就是复制黏贴以前的版本,你要想知道其他问题答案就得去读官方文档吧. #!/usr/bin/python # -*- coding: UTF-8 -*- import numpy as np import pandas as pd import MySQLdb df = pd.read_csv('C:\\Users\\Administrato

  • python pandas模块基础学习详解

    Pandas类似R语言中的数据框(DataFrame),Pandas基于Numpy,但是对于数据框结构的处理比Numpy要来的容易. 1. Pandas的基本数据结构和使用 Pandas有两个主要的数据结构:Series和DataFrame.Series类似Numpy中的一维数组,DataFrame则是使用较多的多维表格数据结构. Series的创建 >>>import numpy as np >>>import pandas as pd >>>s=p

  • Python3使用pandas模块读写excel操作示例

    本文实例讲述了Python3使用pandas模块读写excel操作.分享给大家供大家参考,具体如下: 前言 Python Data Analysis Library 或 pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的.Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具,能使我们快速便捷地处理数据.本文介绍如何用pandas读写excel. 1. 读取excel 读取excel主要通过read_excel函数实现,除了pandas

  • Python数据分析模块pandas用法详解

    本文实例讲述了Python数据分析模块pandas用法.分享给大家供大家参考,具体如下: 一 介绍 pandas(Python Data Analysis Library)是基于numpy的数据分析模块,提供了大量标准数据模型和高效操作大型数据集所需要的工具,可以说pandas是使得Python能够成为高效且强大的数据分析环境的重要因素之一. pandas主要提供了3种数据结构: 1)Series,带标签的一维数组. 2)DataFrame,带标签且大小可变的二维表格结构. 3)Panel,带标

  • Python数据分析之如何利用pandas查询数据示例代码

    前言 在数据分析领域,最热门的莫过于Python和R语言,本文将详细给大家介绍关于Python利用pandas查询数据的相关内容,分享出来供大家参考学习,下面话不多说了,来一起看看详细的介绍吧. 示例代码 这里的查询数据相当于R语言里的subset功能,可以通过布尔索引有针对的选取原数据的子集.指定行.指定列等.我们先导入一个student数据集: student = pd.io.parsers.read_csv('C:\\Users\\admin\\Desktop\\student.csv')

  • Python3.5 Pandas模块之Series用法实例分析

    本文实例讲述了Python3.5 Pandas模块之Series用法.分享给大家供大家参考,具体如下: 1.Pandas模块引入与基本数据结构 2.Series的创建 #!/usr/bin/env python # -*- coding:utf-8 -*- # Author:ZhengzhengLiu #模块引入 import numpy as np import pandas as pd from pandas import Series,DataFrame #1.Series通过numpy一

  • Windows下Python使用Pandas模块操作Excel文件的教程

    安装Python环境 ANACONDA是一个Python的发行版本,包含了400多个Python最常用的库,其中就包括了数据分析中需要经常使用到的Numpy和Pandas等.更重要的是,不论在哪个平台上,都可以一键安装,自动配置好环境,不需要用户任何的额外操作,非常方便.因此,安装Python环境就只需要到ANACONDA网站上下载安装文件,双击安装即可. ANACONDA官方下载地址:https://www.continuum.io/downloads 安装完成之后,使用windows + r

  • Python3.5 Pandas模块缺失值处理和层次索引实例详解

    本文实例讲述了Python3.5 Pandas模块缺失值处理和层次索引.分享给大家供大家参考,具体如下: 1.pandas缺失值处理 import numpy as np import pandas as pd from pandas import Series,DataFrame df3 = DataFrame([ ["Tom",np.nan,456.67,"M"], ["Merry",34,345.56,np.nan], [np.nan,np

  • Python数据分析库pandas基本操作方法

    pandas是什么? 是它吗? ....很显然pandas没有这个家伙那么可爱.... 我们来看看pandas的官网是怎么来定义自己的: pandas is an open source, easy-to-use data structures and data analysis tools for the Python programming language. 很显然,pandas是python的一个非常强大的数据分析库! 让我们来学习一下它吧! 1.pandas序列 import nump

随机推荐