OPENCV去除小连通区域,去除孔洞的实例讲解

一、对于二值图,0代表黑色,255代表白色。去除小连通区域与孔洞,小连通区域用8邻域,孔洞用4邻域。

函数名字为:void RemoveSmallRegion(Mat &Src, Mat &Dst,int AreaLimit, int CheckMode, int NeihborMode)

CheckMode: 0代表去除黑区域,1代表去除白区域; NeihborMode:0代表4邻域,1代表8邻域;

如果去除小连通区域CheckMode=1,NeihborMode=1去除孔洞CheckMode=0,NeihborMode=0

记录每个像素点检验状态的标签,0代表未检查,1代表正在检查,2代表检查不合格(需要反转颜色),3代表检查合格或不需检查 。

1.先对整个图像扫描,如果是去除小连通区域,则将黑色的背景图作为合格,像素值标记为3,如果是去除孔洞,则将白色的色素点作为合格,像素值标记为3。

2.扫面整个图像,对图像进行处理。

void RemoveSmallRegion(Mat &Src, Mat &Dst,int AreaLimit, int CheckMode, int NeihborMode)
{
	int RemoveCount = 0;
	//新建一幅标签图像初始化为0像素点,为了记录每个像素点检验状态的标签,0代表未检查,1代表正在检查,2代表检查不合格(需要反转颜色),3代表检查合格或不需检查
	//初始化的图像全部为0,未检查
	Mat PointLabel = Mat::zeros(Src.size(), CV_8UC1);
	if (CheckMode == 1)//去除小连通区域的白色点
	{
		cout << "去除小连通域.";
		for (int i = 0; i < Src.rows; i++)
		{
			for (int j = 0; j < Src.cols; j++)
			{
				if (Src.at<uchar>(i, j) < 10)
				{
					PointLabel.at<uchar>(i, j) = 3;//将背景黑色点标记为合格,像素为3
				}
			}
		}
	}
	else//去除孔洞,黑色点像素
	{
		cout << "去除孔洞";
		for (int i = 0; i < Src.rows; i++)
		{
			for (int j = 0; j < Src.cols; j++)
			{
				if (Src.at<uchar>(i, j) > 10)
				{
					PointLabel.at<uchar>(i, j) = 3;//如果原图是白色区域,标记为合格,像素为3
				}
			}
		}
	}

	vector<Point2i>NeihborPos;//将邻域压进容器
	NeihborPos.push_back(Point2i(-1, 0));
	NeihborPos.push_back(Point2i(1, 0));
	NeihborPos.push_back(Point2i(0, -1));
	NeihborPos.push_back(Point2i(0, 1));
	if (NeihborMode == 1)
	{
		cout << "Neighbor mode: 8邻域." << endl;
		NeihborPos.push_back(Point2i(-1, -1));
		NeihborPos.push_back(Point2i(-1, 1));
		NeihborPos.push_back(Point2i(1, -1));
		NeihborPos.push_back(Point2i(1, 1));
	}
	else cout << "Neighbor mode: 4邻域." << endl;
	int NeihborCount = 4 + 4 * NeihborMode;
	int CurrX = 0, CurrY = 0;
	//开始检测
	for (int i = 0; i < Src.rows; i++)
	{
		for (int j = 0; j < Src.cols; j++)
		{
			if (PointLabel.at<uchar>(i, j) == 0)//标签图像像素点为0,表示还未检查的不合格点
			{ //开始检查
				vector<Point2i>GrowBuffer;//记录检查像素点的个数
				GrowBuffer.push_back(Point2i(j, i));
				PointLabel.at<uchar>(i, j) = 1;//标记为正在检查
				int CheckResult = 0;

				for (int z = 0; z < GrowBuffer.size(); z++)
				{
					for (int q = 0; q < NeihborCount; q++)
					{
						CurrX = GrowBuffer.at(z).x + NeihborPos.at(q).x;
						CurrY = GrowBuffer.at(z).y + NeihborPos.at(q).y;
						if (CurrX >= 0 && CurrX<Src.cols&&CurrY >= 0 && CurrY<Src.rows) //防止越界
						{
							if (PointLabel.at<uchar>(CurrY, CurrX) == 0)
							{
								GrowBuffer.push_back(Point2i(CurrX, CurrY)); //邻域点加入buffer
								PointLabel.at<uchar>(CurrY, CurrX) = 1;   //更新邻域点的检查标签,避免重复检查
							}
						}
					}
				}
				if (GrowBuffer.size()>AreaLimit) //判断结果(是否超出限定的大小),1为未超出,2为超出
					CheckResult = 2;
				else
				{
					CheckResult = 1;
					RemoveCount++;//记录有多少区域被去除
				}

				for (int z = 0; z < GrowBuffer.size(); z++)
				{
					CurrX = GrowBuffer.at(z).x;
					CurrY = GrowBuffer.at(z).y;
					PointLabel.at<uchar>(CurrY,CurrX)+=CheckResult;//标记不合格的像素点,像素值为2
				}
				//********结束该点处的检查********** 

			}
		}

	}

	CheckMode = 255 * (1 - CheckMode);
	//开始反转面积过小的区域
	for (int i = 0; i < Src.rows; ++i)
	{
		for (int j = 0; j < Src.cols; ++j)
		{
			if (PointLabel.at<uchar>(i,j)==2)
			{
				Dst.at<uchar>(i, j) = CheckMode;
			}
			else if (PointLabel.at<uchar>(i, j) == 3)
			{
				Dst.at<uchar>(i, j) = Src.at<uchar>(i, j);

			}
		}
	}
	cout << RemoveCount << " objects removed." << endl;
}

调用函数:dst是原来的二值图。

Mat erzhi1 = Mat::zeros(srcImage.rows, srcImage.cols, CV_8UC1);
RemoveSmallRegion(dst, erzhi,100, 1, 1);
RemoveSmallRegion(erzhi, erzhi,100, 0, 0);
imshow("erzhi1", erzhi);

和之前的图像相比

以上这篇OPENCV去除小连通区域,去除孔洞的实例讲解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • 利用Opencv中Houghline方法实现直线检测

    利用Opencv中的Houghline方法进行直线检测-python语言 这是给Python部落翻译的文章,请在这里看原文. 在图像处理中,霍夫变换用来检测任意能够用数学公式表达的形状,即使这个形状被破坏或者有点扭曲. 下面我们将看到利用HoughLine算法来阐述霍夫变化进行直线检测的原理,把此算法应用到特点图像的边缘检测是可取的.边缘检测方法请参考这篇文章–边缘检测. Houghline算法基础 直线可以表示为y=mx+c,或者以极坐标形式表示为r=xcosθ+ysinθ,其中r是原点到直线

  • 详解使用JavaCV/OpenCV抓取并存储摄像头图像

    本程序通过JFrame实时显示本机摄像头图像,并将图像存储到一个缓冲区,当用户用鼠标点击JFrame中任何区域时,显示抓取图像的简单动画,同时保存缓冲区的图像到磁盘文件中.点击JFrame关闭按钮可以退出程序. 实现: import java.awt.Graphics2D; import java.awt.event.ActionEvent; import java.awt.event.ActionListener; import java.awt.event.MouseAdapter; imp

  • Ubuntu中Opencv的安装使用教程

    前言 OpenCV为基于BSD许可(开源)发行的跨平台计算机视觉库,可运行在Linux.Windows和Mac OS上.它轻量级而且高效,提供了Python.Ruby.MATLAB等语言接口,实现了图像处理和计算机视觉方面的很多通用算法. OpenCV不仅在进行软件开发的过程中需要用到,而且他也是很多开源软件的运行依赖,所以安装一个Opencv就很有必要了,即使自己本身并不想学习使用. 安装 以下主要是从百度上找到的可用方法: 安装运行依赖 $ sudo apt-get install libq

  • 简单了解OpenCV是个什么东西

    OpenCV于1999年由Intel建立,如今由Willow Garage提供支持.OpenCV是一个基于BSD许可[1] (开源)发行的跨平台计算机视觉库,可以运行在Linux.Windows和Mac OS操作系统上.它轻量级而且高效--由一系列 C 函数和少量 C++ 类构成,同时提供了Python.Ruby.MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法.[2] 最新版本是3.3 ,2017年8月3日发布[3] . OpenCV 拥有包括 500 多个C函数的跨平台

  • 利用C#版OpenCV实现圆心求取实例代码

    前言 OpenCVSharp是OpenCV的.NET wrapper,是一名日本工程师开发的,项目地址为:https://github.com/shimat/opencvsharp. 该源码是 BSD开放协议,BSD开源协议是一个给于使用者很大自由的协议.基本上使用者可以"为所欲为",可以自由的使用,修改源代码,也可以将修改后的代码作为开源或者专有软件再发布或商业化销售. 1.OpenCVSharp的下载 可以直接从上面的github上下载源码,自行编译引用: 也可用vs中的nuget

  • OPENCV去除小连通区域,去除孔洞的实例讲解

    一.对于二值图,0代表黑色,255代表白色.去除小连通区域与孔洞,小连通区域用8邻域,孔洞用4邻域. 函数名字为:void RemoveSmallRegion(Mat &Src, Mat &Dst,int AreaLimit, int CheckMode, int NeihborMode) CheckMode: 0代表去除黑区域,1代表去除白区域; NeihborMode:0代表4邻域,1代表8邻域; 如果去除小连通区域CheckMode=1,NeihborMode=1去除孔洞CheckM

  • Opencv求取连通区域重心实例

    我们有时候需要求取某一个物体重心,这里一般将图像二值化,得出该物体的轮廓,然后根据灰度重心法,计算出每一个物体的中心. 步骤如下: 1)合适的阈值二值化 2)求取轮廓 3)计算重心 otsu算法求取最佳阈值 otsu法(最大类间方差法,有时也称之为大津算法)使用的是聚类的思想,把图像的灰度数按灰度级分成2个部分,使得两个部分之间的灰度值差异最大,每个部分之间的灰度差异最小,通过方差的计算来寻找一个合适的灰度级别来划分,otsu算法被认为是图像分割中阈值选取的最佳算法,计算简单,不受图像亮度和对比

  • 微信小程序模板与设置WXML实例讲解

    目录 一.WXML模板语法--数据绑定 二.WXML模板语法--事件绑定 三.WXML模板语法--条件渲染 1.wx:if 2.结合<block>使用wx:if 3.hidden隐藏 四.WXML模板语法--列表渲染 1.wx:for遍历数组 2.手动指定索引和当前项的变量名* 3.wx:key的使用 一.WXML模板语法--数据绑定 数据绑定的基本原则 在 data 中定义数据 在页面对应的.js文件中,把数据定义到data对象中,如下图在home页面中的home.js中定义home页面的d

  • Opencv提取连通区域轮廓的方法

    本文实例为大家分享了Opencv提取连通区域轮廓的具体代码,供大家参考,具体内容如下 在进行图像分割后,可能需要对感兴趣的目标区域进行提取,比较常用的方法是计算轮廓. 通过轮廓可以获得目标的一些信息: (1)目标位置 (2)目标大小(即面积) (3)目标形状(轮廓矩) 当然,轮廓不一定代表希望目标区域,阈值分割时可能造成一部分信息丢失,因此可以计算轮廓的质心坐标,再进行漫水填充. 程序中有寻找质心+填充,但效果不好,因此就不放填充后的图了. 实验结果: #include "opencv2/img

  • 使用openCV去除文字中乱入的线条实例

    今天上午,朋友发来一张图片如下.没错,这就是原图,他希望可以通过一些简单的算法将图中这条穿过单词间的直线去掉,使得到的结果能够通过他的文字识别算法并得出正确结果--The Techniques of Machine Vision. 乍一看这似乎挺简单,(1)将图像二值化:(2)找出这条直线:(3)将直线区域填成背景色(即白色):(4)再通过膨胀.腐蚀等操作将单词缺失的部分给补全.以上4步似乎可以满足要求,但测试发现,效果不尽人意. 一.按上述方法实现过程 二值化结果如图1.1所示,可以看到图像并

  • opencv模板匹配相同位置去除重复的框

    使用opencv自带的模板匹配 1.目标匹配函数:cv2.matchTemplate() res=cv2.matchTemplate(image, templ, method, result=None, mask=None) image:待搜索图像 templ:模板图像 result:匹配结果 method:计算匹配程度的方法,主要有以下几种: CV_TM_SQDIFF 平方差匹配法:该方法采用平方差来进行匹配:最好的匹配值为0:匹配越差,匹配值越大. CV_TM_CCORR 相关匹配法:该方法

  • opencv 查找连通区域 最大面积实例

    今天在弄一个查找连通的最大面积的问题. 要把图像弄成黑底,白字,这样才可以正确找到. 然后调用下边的方法: RETR_CCOMP:提取所有轮廓,并将轮廓组织成双层结构(two-level hierarchy),顶层为连通域的外围边界,次层位内层边界 #include <opencv2/imgproc.hpp> #include <opencv2/highgui.hpp> using namespace cv; using namespace std; int main( int a

  • 浅谈opencv自动光学检测、目标分割和检测(连通区域和findContours)

    步骤如下: 1.图片灰化: 2.中值滤波 去噪 3.求图片的光影(自动光学检测) 4.除法去光影 5.阈值操作 6.实现了三种目标检测方法 主要分两种连通区域和findContours 过程遇到了错误主要是图片忘了灰化处理,随机颜色的问题.下面代码都已经进行了解决 这是findContours的效果 下面是连通区域的结果 #include <opencv2\core\utility.hpp> #include <opencv2\imgproc.hpp> #include <o

  • 微信小程序按钮去除边框线分享页面功能

    有一个需求是分享当前页面,使用美工的分享按钮图片来分享,而小程序分享功能只有button有 open-type="share"这个属性,使用image标签肯定不行.我是这样做的: <button open-type="share" style="height:85rpx;width:215rpx;padding:0;background-color:#fff;border-color:#fff;margin-right:10rpx" >

  • mysql优化小技巧之去除重复项实现方法分析【百万级数据】

    本文实例讲述了mysql优化小技巧之去除重复项实现方法.分享给大家供大家参考,具体如下: 说到这个去重,脑仁不禁得一疼,尤其是出具量比较大的时候.毕竟咱不是专业的DB,所以嘞,只能自己弄一下适合自己去重方法了. 首先按照常规首段,使用having函数检查重复项,完事一个一个的删除.不要问我having检测重复项的sql咋写,你懂得哈...这个在只有几条重复的时候还可以.要是几千上万条不同数据重复,那咋办... 完事呢,咱就考虑了,用having函数查询的时候,原始sql如下: select `n

随机推荐