Python实现矩阵相乘的三种方法小结

问题描述

分别实现矩阵相乘的3种算法,比较三种算法在矩阵大小分别为22∗2222∗22, 23∗2323∗23, 24∗2424∗24, 25∗2525∗25, 26∗2626∗26, 27∗2727∗27, 28∗2828∗28, 29∗2929∗29时的运行时间与MATLAB自带的矩阵相乘的运行时间,绘制时间对比图。

解题方法

本文采用了以下方法进行求值:矩阵计算法、定义法、分治法和Strassen方法。这里我们使用Matlab以及Python对这个问题进行处理,比较两种语言在一样的条件下,运算速度的差别。

编程语言

Python

具体代码

#-*- coding: utf-8 -*-
from matplotlib.font_manager import FontProperties
import numpy as np
import time
import random
import math
import copy
import matplotlib.pyplot as plt

#n = [2**2, 2**3, 2**4, 2**5, 2**6, 2**7, 2**8, 2**9, 2**10, 2**11, 2**12]
n = [2**2, 2**3, 2**4, 2**5, 2**6, 2**7, 2**8, 2**9, 2**10, 2**11]
Sum_time1 = []
Sum_time2 = []
Sum_time3 = []
Sum_time4 = []
for m in n:
 A = np.random.randint(0, 2, [m, m])
 B = np.random.randint(0, 2, [m, m])
 A1 = np.mat(A)
 B1 = np.mat(B)
 time_start = time.time()
 C1 = A1*B1
 time_end = time.time()
 Sum_time1.append(time_end - time_start)

 C2 = np.zeros([m, m], dtype = np.int)
 time_start = time.time()
 for i in range(m):
  for k in range(m):
   for j in range(m):
    C2[i, j] = C2[i, j] + A[i, k] * B[k, j]
 time_end = time.time()
 Sum_time2.append(time_end - time_start)
 A11 = np.mat(A[0:m//2, 0:m//2])
 A12 = np.mat(A[0:m//2, m//2:m])
 A21 = np.mat(A[m//2:m, 0:m//2])
 A22 = np.mat(A[m//2:m, m//2:m])
 B11 = np.mat(B[0:m//2, 0:m//2])
 B12 = np.mat(B[0:m//2, m//2:m])
 B21 = np.mat(B[m//2:m, 0:m//2])
 B22 = np.mat(B[m//2:m, m//2:m])
 time_start = time.time()
 C11 = A11 * B11 + A12 * B21
 C12 = A11 * B12 + A12 * B22
 C21 = A21 * B11 + A22 * B21
 C22 = A21 * B12 + A22 * B22
 C3 = np.vstack((np.hstack((C11, C12)), np.hstack((C21, C22))))
 time_end = time.time()
 Sum_time3.append(time_end - time_start)
 time_start = time.time()
 M1 = A11 * (B12 - B22)
 M2 = (A11 + A12) * B22
 M3 = (A21 + A22) * B11
 M4 = A22 * (B21 - B11)
 M5 = (A11 + A22) * (B11 + B22)
 M6 = (A12 - A22) * (B21 + B22)
 M7 = (A11 - A21) * (B11 + B12)
 C11 = M5 + M4 - M2 + M6
 C12 = M1 + M2
 C21 = M3 + M4
 C22 = M5 + M1 - M3 - M7
 C4 = np.vstack((np.hstack((C11, C12)), np.hstack((C21, C22))))
 time_end = time.time()
 Sum_time4.append(time_end - time_start)

f1 = open('python_time1.txt', 'w')
for ele in Sum_time1:
 f1.writelines(str(ele) + '\n')
f1.close()

f2 = open('python_time2.txt', 'w')
for ele in Sum_time2:
 f2.writelines(str(ele) + '\n')
f2.close()

f3 = open('python_time3.txt', 'w')
for ele in Sum_time3:
 f3.writelines(str(ele) + '\n')
f3.close()

f4 = open('python_time4.txt', 'w')
for ele in Sum_time4:
 f4.writelines(str(ele) + '\n')
f4.close()

font = FontProperties(fname=r"c:\windows\fonts\simsun.ttc", size=8)
plt.figure(1)
plt.subplot(221)
plt.semilogx(n, Sum_time1, 'r-*')
plt.ylabel(u"时间(s)", fontproperties=font)
plt.xlabel(u"矩阵的维度n", fontproperties=font)
plt.title(u'python自带的方法', fontproperties=font)
plt.subplot(222)
plt.semilogx(n, Sum_time2, 'b-*')
plt.ylabel(u"时间(s)", fontproperties=font)
plt.xlabel(u"矩阵的维度n", fontproperties=font)
plt.title(u'定义法', fontproperties=font)
plt.subplot(223)
plt.semilogx(n, Sum_time3, 'y-*')
plt.ylabel(u"时间(s)", fontproperties=font)
plt.xlabel(u"矩阵的维度n", fontproperties=font)
plt.title( u'分治法', fontproperties=font)
plt.subplot(224)
plt.semilogx(n, Sum_time4, 'g-*')
plt.ylabel(u"时间(s)", fontproperties=font)
plt.xlabel(u"矩阵的维度n", fontproperties=font)
plt.title( u'Strasses法', fontproperties=font)
plt.figure(2)
plt.semilogx(n, Sum_time1, 'r-*', n, Sum_time2, 'b-+', n, Sum_time3, 'y-o', n, Sum_time4, 'g-^')
#plt.legend(u'python自带的方法', u'定义法', u'分治法', u'Strasses法', fontproperties=font)
plt.show()

以上这篇Python实现矩阵相乘的三种方法小结就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • Python矩阵常见运算操作实例总结

    本文实例讲述了Python矩阵常见运算操作.分享给大家供大家参考,具体如下: python的numpy库提供矩阵运算的功能,因此我们在需要矩阵运算的时候,需要导入numpy的包. 一.numpy的导入和使用 from numpy import *;#导入numpy的库函数 import numpy as np; #这个方式使用numpy的函数时,需要以np.开头. 二.矩阵的创建 由一维或二维数据创建矩阵 from numpy import *; a1=array([1,2,3]); a1=ma

  • python的几种矩阵相乘的公式详解

    1. 同线性代数中矩阵乘法的定义: np.dot() np.dot(A, B):对于二维矩阵,计算真正意义上的矩阵乘积,同线性代数中矩阵乘法的定义.对于一维矩阵,计算两者的内积.见如下Python代码: import numpy as np # 2-D array: 2 x 3 two_dim_matrix_one = np.array([[1, 2, 3], [4, 5, 6]]) # 2-D array: 3 x 2 two_dim_matrix_two = np.array([[1, 2]

  • 解决Python计算矩阵乘向量,矩阵乘实数的一些小错误

    计算:Ax-b A: 2*2 x: 2*1 b: 2*1 so, Ax-b: 2*1 if __name__ == "__main__": A = np.array([[4.0, 1.0], [1.0, 3.0]]) b = np.array([[1.0], [2.0]]) x_0 = np.array([[2.0], [1.0]]) r_k = A * x_0 - b print(r_k) 错误!!! 修改: if __name__ == "__main__":

  • 纯python进行矩阵的相乘运算的方法示例

    本文介绍了纯python进行矩阵的相乘运算的方法示例,分享给大家,具体如下: def matrixMultiply(A, B): # 获取A的行数和列数 A_row, A_col = shape(A) # 获取B的行数和列数 B_row, B_col = shape(B) # 不能运算情况的判断 if(A_col != B_row): raise ValueError # 最终的矩阵 result = [] # zip 解包后是转置后的元组,强转成list, 存入result中 BT = [li

  • 对numpy 数组和矩阵的乘法的进一步理解

    1.当为array的时候,默认d*f就是对应元素的乘积,multiply也是对应元素的乘积,dot(d,f)会转化为矩阵的乘积, dot点乘意味着相加,而multiply只是对应元素相乘,不相加 2.当为mat的时候,默认d*f就是矩阵的乘积,multiply转化为对应元素的乘积,dot(d,f)为矩阵的乘积 3. 混合时候的情况,一般不要混合 混合的时候默认按照矩阵乘法的, multiply转化为对应元素的乘积,dot(d,f)为矩阵的乘积 总结:数组乘法默认的是点乘,矩阵默认的是矩阵乘法,混

  • python的常见矩阵运算(小结)

    python的numpy库提供矩阵运算的功能,因此我们在需要矩阵运算的时候,需要导入numpy的包. 1.numpy的导入和使用 from numpy import *;#导入numpy的库函数 import numpy as np; #这个方式使用numpy的函数时,需要以np.开头. 2.矩阵的创建 由一维或二维数据创建矩阵 from numpy import *; a1=array([1,2,3]); a1=mat(a1); 创建常见的矩阵 data1=mat(zeros((3,3)));

  • Python实现矩阵相乘的三种方法小结

    问题描述 分别实现矩阵相乘的3种算法,比较三种算法在矩阵大小分别为22∗2222∗22, 23∗2323∗23, 24∗2424∗24, 25∗2525∗25, 26∗2626∗26, 27∗2727∗27, 28∗2828∗28, 29∗2929∗29时的运行时间与MATLAB自带的矩阵相乘的运行时间,绘制时间对比图. 解题方法 本文采用了以下方法进行求值:矩阵计算法.定义法.分治法和Strassen方法.这里我们使用Matlab以及Python对这个问题进行处理,比较两种语言在一样的条件下,

  • Python 循环终止语句的三种方法小结

    在Python循环终止语句有三种: 1.break break用于退出本层循环 示例如下: while True: print "123" break print "456" 2.continue continue为退出本次循环,继续下次循环 示例如下: while True: print "123" continue print "456" 3.自定义标记 Tag 自已定义一个标记为True或False 示例代码: Tag

  • Python如何截图保存的三种方法(小结)

    本文介绍python如何进行截图保存的几种方法,在测试过程中,是有必要截图,特别是遇到错误的时候进行截图.结合Python其它模块如time ,os.path,基本能满足截图保存文件的功能需求 第一种 selenium for python get_screenshot_as_file() 相关代码如下: # coding=utf-8 import time from selenium import webdriver driver = webdriver.Chrome() driver.max

  • Python 矩阵转置的几种方法小结

    我就废话不多说了,直接上代码吧! #Python的matrix转置 matrix = [[1,2,3,4],[5,6,7,8],[9,10,11,12]] def printmatrix(m): for ele in m: for i in ele: print("%2d" %i,end = " ") print() #1.利用元祖的特性进行转置 def transformMatrix(m): #此处巧妙的先按照传递的元祖m的列数,生成了r的行数 r = [[] f

  • python记录程序运行时间的三种方法

    python记录程序运行时间的三种方法              这里提供了python记录程序运行时间的三种方法,并附有实现代码,最后进行比较,大家参考下: 方法1 import datetime starttime = datetime.datetime.now() #long running endtime = datetime.datetime.now() print (endtime - starttime).seconds 方法 2 start = time.time() run_f

  • Python操作MySQL数据库的三种方法总结

    1. MySQLdb 的使用 (1) 什么是MySQLdb? MySQLdb 是用于 Python 连接 MySQL 数据库的接口,它实现了 Python 数据库 API 规范 V2.0,基于 MySQL C API 上建立的. (2) 源码安装 MySQLdb: https://pypi.python.org/pypi/MySQL-python $ tar zxvf MySQL-python-*.tar.gz $ cd MySQL-python-* $ python setup.py buil

  • 对python添加模块路径的三种方法总结

    之前对mac os系统自带的python进行了升级,结果发现新安装的python的site-packages目录并没有加到python的系统路径中,所以在使用其他库时发现出现了缺少模块的错误. 查看python的模块路径方法是 import sys print sys.path 这个就会打印出所有的模块路径. 下边是在这个python系统路径中加入新的模块路径的三种方法: 1.添加环境变量PYTHONPATH,python会添加此路径下的模块,在.bash_profile文件中添加如下类似行:

  • Python实现重建二叉树的三种方法详解

    本文实例讲述了Python实现重建二叉树的三种方法.分享给大家供大家参考,具体如下: 学习算法中,探寻重建二叉树的方法: 用input 前序遍历顺序输入字符重建 前序遍历顺序字符串递归解析重建 前序遍历顺序字符串堆栈解析重建 如果懒得去看后面的内容,可以直接点击此处本站下载完整实例代码. 思路 学习算法中,python 算法方面的资料相对较少,二叉树解析重建更少,只能摸着石头过河. 通过不同方式遍历二叉树,可以得出不同节点的排序.那么,在已知节点排序的前提下,通过某种遍历方式,可以将排序进行解析

  • Python操作配置文件ini的三种方法讲解

    python 操作配置文件ini的三种方法 方法一:crudini 命令 说明 crudini命令是Linux下的一个操作配置文件的命令工具 用法 crudini --set [--existing] config_file section [param] [value] # 修改配置文件内容 crudini --get [--format=sh|ini] config_file [section] [param] # 获取配置文件内容 crudini --del [--existing] co

  • Python 打印中文字符的三种方法

    方法一: 现在用 notepad++,在 UTF-8 格式下编写以下语句: #coding=utf-8 print"打印中文字符" 方法二: 用encode和decode 如: import os.path import xlrd,sys Filename='/home/tom/Desktop/1234.xls' if not os.path.isfile(Filename): raise NameError,"%s is not a valid filename"

随机推荐