Tensorflow卷积神经网络实例

CNN最大的特点在于卷积的权值共享结构,可以大幅减少神经网络的参数量,防止过拟合的同时又降低了神经网络模型的复杂度。在CNN中,第一个卷积层会直接接受图像像素级的输入,每一个卷积操作只处理一小块图像,进行卷积变化后再传到后面的网络,每一层卷积都会提取数据中最有效的特征。这种方法可以提取到图像中最基础的特征,比如不同方向的边或者拐角,而后再进行组合和抽象形成更高阶的特征。

一般的卷积神经网络由多个卷积层构成,每个卷积层中通常会进行如下几个操作:

  • 图像通过多个不同的卷积核的滤波,并加偏置(bias),特取出局部特征,每个卷积核会映射出一个新的2D图像。
  • 将前面卷积核的滤波输出结果,进行非线性的激活函数处理。目前最常见的是使用ReLU函数,而以前Sigmoid函数用得比较多。
  • 对激活函数的结果再进行池化操作(即降采样,比如将2*2的图片将为1*1的图片),目前一般是使用最大池化,保留最显著的特征,并提升模型的畸变容忍能力。

总结一下,CNN的要点是局部连接(local Connection)、权值共享(Weight Sharing)和池化层(Pooling)中的降采样(Down-Sampling)。

本文将使用Tensorflow实现一个简单的卷积神经网络,使用的数据集是MNIST,网络结构:两个卷积层加一个全连接层。

from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf

# 载入MNIST数据集,并创建默认的Interactive Session。
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
sess = tf.InteractiveSession()

# 创建权重和偏置,以便重复使用。我们需要给权重制造一些随机的噪声来打破完全对称,比如截断的正态分布噪声,标准差设为0.1
def weight_variable(shape):
 initial = tf.truncated_normal(shape, stddev=0.1)
 return tf.Variable(initial)

def bias_variable(shape):
 initial = tf.constant(0.1, shape=shape)
 return tf.Variable(initial)

# 创建卷积层、池化层,以便重复使用
def conv2d(x, W):
 return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

def max_pool(x):
 return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')

# 定义输入的placeholder
x = tf.placeholder(tf.float32, [None, 784])
y_ = tf.placeholder(tf.float32, [None, 10])
x_image = tf.reshape(x, [-1, 28, 28, 1])

# 定义第一个卷积层
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool(h_conv1)

# 定义第二个卷积层
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool(h_conv2)

# 定义全连接层。由于第二个卷积层输出的tensor是7*7*64,我们使用tf.reshape函数对其进行变形
W_fc1 = weight_variable([7*7*64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

# 为了减轻过拟合,下面使用一个Dropout层。通过一个placeholder传入keep_prob比率来控制的。在训练时,我们随机丢弃一部分节点
# 的数据来减轻过拟合,预测时则保留全部数据来追求最好的预测性能。
keep_prob = tf.placeholder(dtype=tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

# 最后我们将Dropout层的输出连接一个Softmax层,得到最后的概率输出
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)

# 定义损失函数为cross entropy和优化器
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y_conv), reduction_indices=[1]))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)

# 定义评测准确率的操作
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

# 下面开始训练
tf.global_variables_initializer().run()
for i in range(20000):
 batch = mnist.train.next_batch(50)
 if i % 100 == 0:
  train_accuracy = accuracy.eval(feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0})
  print("Step %d, training accuracy %g" % (i, train_accuracy))
 train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})

print("test accuracy %g" % accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))

# 载入MNIST数据集,并创建默认的Interactive Session。
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
sess = tf.InteractiveSession()

# 创建权重和偏置,以便重复使用。我们需要给权重制造一些随机的噪声来打破完全对称,比如截断的正态分布噪声,标准差设为0.1
def weight_variable(shape):
 initial = tf.truncated_normal(shape, stddev=0.1)
 return tf.Variable(initial)

def bias_variable(shape):
 initial = tf.constant(0.1, shape=shape)
 return tf.Variable(initial)

# 创建卷积层、池化层,以便重复使用
def conv2d(x, W):
 return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

def max_pool(x):
 return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')

# 定义输入的placeholder
x = tf.placeholder(tf.float32, [None, 784])
y_ = tf.placeholder(tf.float32, [None, 10])
x_image = tf.reshape(x, [-1, 28, 28, 1])

# 定义第一个卷积层
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool(h_conv1)

# 定义第二个卷积层
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool(h_conv2)

# 定义全连接层。由于第二个卷积层输出的tensor是7*7*64,我们使用tf.reshape函数对其进行变形
W_fc1 = weight_variable([7*7*64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

# 为了减轻过拟合,下面使用一个Dropout层。通过一个placeholder传入keep_prob比率来控制的。在训练时,我们随机丢弃一部分节点
# 的数据来减轻过拟合,预测时则保留全部数据来追求最好的预测性能。
keep_prob = tf.placeholder(dtype=tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

# 最后我们将Dropout层的输出连接一个Softmax层,得到最后的概率输出
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)

# 定义损失函数为cross entropy和优化器
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y_conv), reduction_indices=[1]))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)

# 定义评测准确率的操作
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

# 下面开始训练
tf.global_variables_initializer().run()
for i in range(20000):
 batch = mnist.train.next_batch(50)
 if i % 100 == 0:
  train_accuracy = accuracy.eval(feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0})
  print("Step %d, training accuracy %g" % (i, train_accuracy))
 train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})

print("test accuracy %g" % accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))

运行结果:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • python机器学习之神经网络实现

    神经网络在机器学习中有很大的应用,甚至涉及到方方面面.本文主要是简单介绍一下神经网络的基本理论概念和推算.同时也会介绍一下神经网络在数据分类方面的应用. 首先,当我们建立一个回归和分类模型的时候,无论是用最小二乘法(OLS)还是最大似然值(MLE)都用来使得残差达到最小.因此我们在建立模型的时候,都会有一个loss function. 而在神经网络里也不例外,也有个类似的loss function. 对回归而言: 对分类而言: 然后同样方法,对于W开始求导,求导为零就可以求出极值来. 关于式子中

  • BP神经网络原理及Python实现代码

    本文主要讲如何不依赖TenserFlow等高级API实现一个简单的神经网络来做分类,所有的代码都在下面:在构造的数据(通过程序构造)上做了验证,经过1个小时的训练分类的准确率可以达到97%. 完整的结构化代码见于:链接地址 先来说说原理 网络构造 上面是一个简单的三层网络:输入层包含节点X1 , X2:隐层包含H1,H2:输出层包含O1. 输入节点的数量要等于输入数据的变量数目. 隐层节点的数量通过经验来确定. 如果只是做分类,输出层一般一个节点就够了. 从输入到输出的过程 1.输入节点的输出等

  • PyTorch快速搭建神经网络及其保存提取方法详解

    有时候我们训练了一个模型, 希望保存它下次直接使用,不需要下次再花时间去训练 ,本节我们来讲解一下PyTorch快速搭建神经网络及其保存提取方法详解 一.PyTorch快速搭建神经网络方法 先看实验代码: import torch import torch.nn.functional as F # 方法1,通过定义一个Net类来建立神经网络 class Net(torch.nn.Module): def __init__(self, n_feature, n_hidden, n_output):

  • 纯用NumPy实现神经网络的示例代码

    摘要: 纯NumPy代码从头实现简单的神经网络. Keras.TensorFlow以及PyTorch都是高级别的深度学习框架,可用于快速构建复杂模型.前不久,我曾写过一篇文章,对神经网络是如何工作的进行了简单的讲解.该文章侧重于对神经网络中运用到的数学理论知识进行详解.本文将利用NumPy实现简单的神经网络,在实战中对其进行深层次剖析.最后,我们会利用分类问题对模型进行测试,并与Keras所构建的神经网络模型进行性能的比较. Note:源码可在我的GitHub中查看. 在正式开始之前,需要先对所

  • Tensorflow实现AlexNet卷积神经网络及运算时间评测

    本文实例为大家分享了Tensorflow实现AlexNet卷积神经网络的具体实现代码,供大家参考,具体内容如下 之前已经介绍过了AlexNet的网络构建了,这次主要不是为了训练数据,而是为了对每个batch的前馈(Forward)和反馈(backward)的平均耗时进行计算.在设计网络的过程中,分类的结果很重要,但是运算速率也相当重要.尤其是在跟踪(Tracking)的任务中,如果使用的网络太深,那么也会导致实时性不好. from datetime import datetime import

  • Tensorflow实现卷积神经网络的详细代码

    本文实例为大家分享了Tensorflow实现卷积神经网络的具体代码,供大家参考,具体内容如下 1.概述 定义: 卷积神经网络(Convolutional Neural Network,CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现.它包括卷积层(alternating convolutional layer)和池层(pooling layer). 卷积层(convolutional layer): 对输入数据应用若干过滤器,一个输入参数被

  • PyTorch上搭建简单神经网络实现回归和分类的示例

    本文介绍了PyTorch上搭建简单神经网络实现回归和分类的示例,分享给大家,具体如下: 一.PyTorch入门 1. 安装方法 登录PyTorch官网,http://pytorch.org,可以看到以下界面: 按上图的选项选择后即可得到Linux下conda指令: conda install pytorch torchvision -c soumith 目前PyTorch仅支持MacOS和Linux,暂不支持Windows.安装 PyTorch 会安装两个模块,一个是torch,一个 torch

  • Tensorflow卷积神经网络实例进阶

    在Tensorflow卷积神经网络实例这篇博客中,我们实现了一个简单的卷积神经网络,没有复杂的Trick.接下来,我们将使用CIFAR-10数据集进行训练. CIFAR-10是一个经典的数据集,包含60000张32*32的彩色图像,其中训练集50000张,测试集10000张.CIFAR-10如同其名字,一共标注为10类,每一类图片6000张. 本文实现了进阶的卷积神经网络来解决CIFAR-10分类问题,我们使用了一些新的技巧: 对weights进行了L2的正则化 对图片进行了翻转.随机剪切等数据

  • Python实现的NN神经网络算法完整示例

    本文实例讲述了Python实现的NN神经网络算法.分享给大家供大家参考,具体如下: 参考自Github开源代码:https://github.com/dennybritz/nn-from-scratch 运行环境 Pyhton3 numpy(科学计算包) matplotlib(画图所需,不画图可不必) sklearn(人工智能包,生成数据使用) 计算过程 输入样例 none 代码实现 # -*- coding:utf-8 -*- #!python3 __author__ = 'Wsine' im

  • 神经网络相关之基础概念的讲解

    人工神经网络需要一定的数学基础,但是一般来说比较简单,简单的高数基础即可,这里整理了一些所需要的最基础的概念的理解,对于神经网络的入门,非常基础和重要,而且理解了之后,会发现介绍不需要在看,磨刀不误砍柴工,强烈建议理解清楚之后在去使用诸如tensorflow这样的利器. 自变量/因变量/函数 因为E文文档的阅读时不可避免的接触这些内容,一般将英文也列出来,尽量记住,阅读时会大大提高速度. 导数 作为高数最为基础的导数概念,这里不在赘述,简单烈一下内容能够大体理解即可, 借用一张图形来进行解释:

随机推荐