Python多进程写入同一文件的方法

最近用python的正则表达式处理了一些文本数据,需要把结果写到文件里面,但是由于文件比较大,所以运行起来花费的时间很长。但是打开任务管理器发现CPU只占用了25%,上网找了一下原因发现是由于一个叫GIL的存在,使得Python在同一时间只能运行一个线程,所以只占用了一个CPU,由于我的电脑是4核的,所以CPU利用率就是25%了。

既然多线程没有什么用处,那就可以使用多进程来处理,毕竟多进程是可以不受GIL影响的。Python提供了一个multiprocessing的多进程库,但是多进程也有一些问题,比如,如果进程都需要写入同一个文件,那么就会出现多个进程争用资源的问题,如果不解决,那就会使文件的内容顺序杂乱。这就需要涉及到锁了,但是加锁一般会造成程序的执行速度下降,而且如果进程在多处需要向文件输出,也不好把这些代码整个都锁起来,如果都锁起来,那跟单进程还有什么区别。有一个解决办法就是把向文件的输出都整合到一块去,在这一块集中加个锁,这样问题就不大了。不过还有一种更加优雅的解决方式:使用multiprocessing库的回调函数功能。

具体思路跟把文件输出集中在一起也差不多,就是把进程需要写入文件的内容作为返回值返回给惠和的回调函数,使用回调函数向文件中写入内容。这样做在windows下面还有一个好处,在windows环境下,python的多进程没有像linux环境下的多进程一样,linux环境下的multiprocessing库是基于fork函数,父进程fork了一个子进程之后会把自己的资源,比如文件句柄都传递给子进程。但是在windows环境下没有fork函数,所以如果你在父进程里打开了一个文件,在子进程中写入,会出现ValueError: I/O operation on closed file这样的错误,而且在windows环境下最好加入if __name__ == '__main__'这样的判断,以避免一些可能出现的RuntimeError或者死锁。

下面是代码:

from multiprocessing import Pool
import time

def mycallback(x):
  with open('123.txt', 'a+') as f:
    f.writelines(str(x))

def sayHi(num):
  return num

if __name__ == '__main__':
  e1 = time.time()
  pool = Pool()

  for i in range(10):
    pool.apply_async(sayHi, (i,), callback=mycallback)

  pool.close()
  pool.join()
  e2 = time.time()
  print float(e2 - e1)

运行结果如下:

以上这篇Python多进程写入同一文件的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • 从局部变量和全局变量开始全面解析Python中变量的作用域

    理解全局变量和局部变量 1.定义的函数内部的变量名如果是第一次出现, 且在=符号前,那么就可以认为是被定义为局部变量.在这种情况下,不论全局变量中是否用到该变量名,函数中使用的都是局部变量.例如: num = 100 def func(): num = 123 print num func() 输出结果是123.说明函数中定义的变量名num是一个局部变量,覆盖全局变量.再例如: num = 100 def func(): num += 100 print num func() 输出结果是:Unb

  • python 多进程共享全局变量之Manager()详解

    Manager支持的类型有 list,dict,Namespace,Lock,RLock,Semaphore,BoundedSemaphore,Condition,Event,Queue,Value和Array. 但当使用Manager处理list.dict等可变数据类型时,需要注意一个陷阱,即Manager对象无法监测到它引用的可变对象值的修改,需要通过触发__setitem__方法来让它获得通知. 而触发__setitem__方法比较直接的办法就是增加一个中间变量,如同在C语言中交换两个变量

  • Python global全局变量函数详解

    global语句的作用 在编写程序的时候,如果想为一个在函数外的变量重新赋值,并且这个变量会作用于许多函数中时,就需要告诉python这个变量的作用域是全局变量.此时用global语句就可以变成这个任务,也就是说没有用global语句的情况下,是不能修改全局变量的. 在python的函数使用时,经常会碰到参数定义的问题.如果不声明全局变量,会报错 count = 1 def cc(): count = count+1 cc() Traceback (most recent call last):

  • Python实现多进程的四种方式

    方式一: os.fork() # -*- coding:utf-8 -*- """ pid=os.fork() 1.只用在Unix系统中有效,Windows系统中无效 2.fork函数调用一次,返回两次:在父进程中返回值为子进程id,在子进程中返回值为0 """ import os pid=os.fork() if pid==0: print("执行子进程,子进程pid={pid},父进程ppid={ppid}".format

  • Python multiprocessing.Manager介绍和实例(进程间共享数据)

    Python中进程间共享数据,处理基本的queue,pipe和value+array外,还提供了更高层次的封装.使用multiprocessing.Manager可以简单地使用这些高级接口. Manager()返回的manager对象控制了一个server进程,此进程包含的python对象可以被其他的进程通过proxies来访问.从而达到多进程间数据通信且安全. Manager支持的类型有list,dict,Namespace,Lock,RLock,Semaphore,BoundedSemaph

  • 对Python的多进程锁的使用方法详解

    很多时候,我们需要在多个进程中同时写一个文件,如果不加锁机制,就会导致写文件错乱 这个时候,我们可以使用multiprocessing.Lock() 我一开始是这样使用的: import multiprocessing lock = multiprocessing.Lock() class MatchProcess(multiprocessing.Process): def __init__(self, threadId, mfile, lock): multiprocessing.Proces

  • Python并发之多进程的方法实例代码

    一,进程的理论基础 一个应用程序,归根结底是一堆代码,是静态的,而进程才是执行中的程序,在一个程序运行的时候会有多个进程并发执行. 进程和线程的区别: 进程是系统资源分配的基本单位. 一个进程内可以包含多个线程,属于一对多的关系,进程内的资源,被其内的线程共享 线程是进程运行的最小单位,如果说进程是完成一个功能,那么其线程就是完成这个功能的基本单位 进程间资源不共享,多进程切换资源开销,难度大,同一进程内的线程资源共享,多线程切换资源开销,难度小 进程与线程的共同点: 都是为了提高程序运行效率,

  • Python多进程写入同一文件的方法

    最近用python的正则表达式处理了一些文本数据,需要把结果写到文件里面,但是由于文件比较大,所以运行起来花费的时间很长.但是打开任务管理器发现CPU只占用了25%,上网找了一下原因发现是由于一个叫GIL的存在,使得Python在同一时间只能运行一个线程,所以只占用了一个CPU,由于我的电脑是4核的,所以CPU利用率就是25%了. 既然多线程没有什么用处,那就可以使用多进程来处理,毕竟多进程是可以不受GIL影响的.Python提供了一个multiprocessing的多进程库,但是多进程也有一些

  • python pandas写入excel文件的方法示例

    pandas读取.写入csv数据非常方便,但是有时希望通过excel画个简单的图表看一下数据质量.变化趋势并保存,这时候csv格式的数据就略显不便,因此尝试直接将数据写入excel文件. pandas可以写入一个或者工作簿,两种方法介绍如下: 1.如果是将整个DafaFrame写入excel,则调用to_excel()方法即可实现,示例代码如下: # output为要保存的Dataframe output.to_excel('保存路径 + 文件名.xlsx') 2.有多个数据需要写入多个exce

  • Python写入CSV文件的方法

    本文实例讲述了Python写入CSV文件的方法.分享给大家供大家参考.具体如下: # _*_ coding:utf-8 _*_ #xiaohei.python.seo.call.me:) #win+python2.7.x import csv csvfile = file('csvtest.csv', 'wb') writer = csv.writer(csvfile) writer.writerow(['id', 'url', 'keywords']) data = [ ('1', 'http

  • python写入xml文件的方法

    本文实例讲述了python写入xml文件的方法.分享给大家供大家参考.具体分析如下: 本范例通过xml模块对xml文件进行写入操作 from xml.dom.minidom import Document doc = Document() people = doc.createElement("people") doc.appendChild(people) aperson = doc.createElement("person") people.appendChi

  • Python实现读取及写入csv文件的方法示例

    本文实例讲述了Python实现读取及写入csv文件的方法.分享给大家供大家参考,具体如下: 新建csvData.csv文件,数据如下: 具体代码如下: # coding:utf-8 import csv # 读取csv文件方式1 csvFile = open("csvData.csv", "r") reader = csv.reader(csvFile) # 返回的是迭代类型 data = [] for item in reader: print(item) dat

  • python读取并写入mat文件的方法

    先给大家介绍下python读取并写入mat文件的方法 用matlab生成一个示例mat文件: clear;clc matrix1 = magic(5); matrix2 = magic(6); save matData.mat 用python3读取并写入mat文件: import scipy.io data = scipy.io.loadmat('matData.mat') # 读取mat文件 # print(data.keys()) # 查看mat文件中的所有变量 print(data['ma

  • python 读写、创建 文件的方法(必看)

    python中对文件.文件夹(文件操作函数)的操作需要涉及到os模块和shutil模块. 得到当前工作目录,即当前Python脚本工作的目录路径: os.getcwd() 返回指定目录下的所有文件和目录名:os.listdir() 函数用来删除一个文件:os.remove() 删除多个目录:os.removedirs(r"c:\python") 检验给出的路径是否是一个文件:os.path.isfile() 检验给出的路径是否是一个目录:os.path.isdir() 判断是否是绝对路

  • python:pandas合并csv文件的方法(图书数据集成)

    数据集成:将不同表的数据通过主键进行连接起来,方便对数据进行整体的分析. 两张表:ReaderInformation.csv,ReaderRentRecode.csv ReaderInformation.csv: ReaderRentRecode.csv: pandas读取csv文件,并进行csv文件合并处理: # -*- coding:utf-8 -*- import csv as csv import numpy as np # ------------- # csv读取表格数据 # ---

  • 使用python实现ftp的文件读写方法

    ftp登陆连接 from ftplib import FTP #加载ftp模块 ftp=FTP() #设置变量 ftp.set_debuglevel(2) #打开调试级别2,显示详细信息 ftp.connect("IP","port") #连接的ftp sever和端口 ftp.login("user","password") #连接的用户名,密码 print ftp.getwelcome() #打印出欢迎信息 ftp.cmd

  • python数据写入Excel文件中的实现步骤

    目录 一.导入excel表格文件处理函数 二.创建excel表格类型文件 三.在excel表格类型文件中建立一张sheet表单 四.自定义列名 五.将列属性元组col写进sheet表单中 六.将数据写进sheet表单中 七.保存excel文件 总结 将数据写入Excel文件中,用python实现起来非常的简单,下面一步步地教大家. 一.导入excel表格文件处理函数 import xlwt 注意,这里的xlwt是python的第三方模块,需要下载安装才能使用,不然导入不了(python第三方库的

随机推荐