浅谈python requests 的put, post 请求参数的问题

post, put请求的参数有两种形式

一种是把参数拼接在url中 对应postman

第二种是把参数放在body中 对应postman

在Python requests 库中

一般在的资料都会介绍 post,put请求的参数 用data 这种情况下参数会放在body中

但是有些接口参数通过body传入获取不到只能获取到URL中的参数 我们就需要用到 类似于get请求中的 params 传入参数

requests.post(url=url, params=data, verify=False, timeout=60)

用fiddler抓包查看 参数会直接在URL中

以上这篇浅谈python requests 的put, post 请求参数的问题就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • 详解Python requests 超时和重试的方法

    网络请求不可避免会遇上请求超时的情况,在 requests 中,如果不设置你的程序可能会永远失去响应. 超时又可分为连接超时和读取超时. 连接超时 连接超时指的是在你的客户端实现到远端机器端口的连接时(对应的是 connect() ),Request 等待的秒数. import time import requests url = 'http://www.google.com.hk' print(time.strftime('%Y-%m-%d %H:%M:%S')) try: html = re

  • python爬虫基础教程:requests库(二)代码实例

    get请求 简单使用 import requests ''' 想要学习Python?Python学习交流群:973783996满足你的需求,资料都已经上传群文件,可以自行下载! ''' response = requests.get("https://www.baidu.com/") #text返回的是unicode的字符串,可能会出现乱码情况 # print(response.text) #content返回的是字节,需要解码 print(response.content.decod

  • 详解python之协程gevent模块

    Gevent官网文档地址:http://www.gevent.org/contents.html 进程.线程.协程区分 我们通常所说的协程Coroutine其实是corporate routine的缩写,直接翻译为协同的例程,一般我们都简称为协程. 在linux系统中,线程就是轻量级的进程,而我们通常也把协程称为轻量级的线程即微线程. 进程和协程 下面对比一下进程和协程的相同点和不同点: 相同点: 相同点存在于,当我们挂起一个执行流的时,我们要保存的东西: 栈, 其实在你切换前你的局部变量,以及

  • Python使用grequests(gevent+requests)并发发送请求过程解析

    前言 requests是Python发送接口请求非常好用的一个三方库,由K神编写,简单,方便上手快.但是requests发送请求是串行的,即阻塞的.发送完一条请求才能发送另一条请求. 为了提升测试效率,一般我们需要并行发送请求.这里可以使用多线程,或者协程,gevent或者aiohttp,然而使用起来,都相对麻烦. grequests是K神基于gevent+requests编写的一个并发发送请求的库,使用起来非常简单. 安装方法: pip install gevent grequests 项目地

  • Python的网络编程库Gevent的安装及使用技巧

    安装(以CentOS为例) gevent依赖libevent和greenlet: 1.安装libevent 直接yum install libevent 然后配置python的安装 2.安装easy_install (1) wget -q http://peak.telecommunity.com/dist/ez_setup.py (2)使用 python ez_setup.py (3)使用easy_install 查看命令是否可用,如果不可用可以讲路径加入到PATH中 3.安装greenlet

  • Python并发编程协程(Coroutine)之Gevent详解

    Gevent官网文档地址:http://www.gevent.org/contents.html 基本概念 我们通常所说的协程Coroutine其实是corporateroutine的缩写,直接翻译为协同的例程,一般我们都简称为协程. 在linux系统中,线程就是轻量级的进程,而我们通常也把协程称为轻量级的线程即微线程. 进程和协程 下面对比一下进程和协程的相同点和不同点: 相同点: 我们都可以把他们看做是一种执行流,执行流可以挂起,并且后面可以在你挂起的地方恢复执行,这实际上都可以看做是con

  • 浅谈python中requests模块导入的问题

    今天使用Pycharm来抓取网页图片时候,要导入requests模块,但是在pycharm中import requests 时候报错. 原因: python中还没有安装requests库 解决办法: 1.先找到自己python安装目录下的pip 2.在自己的电脑里打开cmd窗口. 先点击开始栏,在搜索栏输入cmd,按Enter,打打开cmd窗口.在cmd里将目录切换到你的pip所在路径. 比如我的在C:\Python27\Scripts这个目录下,先切换到d盘,再进入这个路径. 具体命令:cd.

  • python使用requests.session模拟登录

    最近开发一套接口,写个Python脚本,使用requests.session模拟一下登录. 因为每次需要获取用户信息,登录需要带着session信息,所以所有请求需要带着session. 请求使用post方式,请求参数类型为raw方式,参数为json类型. 登录接口参数和结果如下: 脚本如下: 1. 引入需要的第三方包 #! /usr/bin/env python3 # -*- coding: utf-8 -*- import requests # import re import json #

  • 浅谈python requests 的put, post 请求参数的问题

    post, put请求的参数有两种形式 一种是把参数拼接在url中 对应postman 第二种是把参数放在body中 对应postman 在Python requests 库中 一般在的资料都会介绍 post,put请求的参数 用data 这种情况下参数会放在body中 但是有些接口参数通过body传入获取不到只能获取到URL中的参数 我们就需要用到 类似于get请求中的 params 传入参数 requests.post(url=url, params=data, verify=False,

  • 浅谈Python接口对json串的处理方法

    最近学习Python接口测试,对于接口测试完全小白.大概一周的学习成果进行总结. 1.接口测试: 目前涉及到的只是对简单单一的接口进行参数传递,得到返回自. 2.关于各种概念: 2.1 http请求包含post方法.get方法.通过json串或XML传递,但后者未做研究 2.2 GET: 浏览器告诉服务器,只获取页面信息,并发送给我. 2.3 POST:浏览器告诉服务器想法不一些信息到某个网址,服务器需确保数据被存储且只存储一次. 2.4 HEAD:浏览器告诉服务器,给我消息头,像get那样被接

  • 浅谈Python 钉钉报警必备知识系统讲解

    本章所讲内容: 1.钉钉报警设置 2.钉钉报警脚本运行. 1.钉钉报警设置 钉钉,关于webhook的报警需求,钉钉报警也是我们在公司中常见的报警系统,在这里主要是结合zabbix二次开发使用,来达到完美报警的使用. 1.1.钉钉报警第一步,创建群机器人 接口地址: https://oapi.dingtalk.com/robot/send?access_token=a25324cafc5b0f2bb239b5e56c71e7f378f570a3d281160dbec9e4f8c4a7e493 文

  • 浅谈Python协程asyncio

    一.协程 官方描述; 协程是子例程的更一般形式. 子例程可以在某一点进入并在另一点退出. 协程则可以在许多不同的点上进入.退出和恢复. 它们可通过 async def 语句来实现. 参见 PEP 492. 协程不是计算机内部提供的,不像进程.线程,由电脑本身提供,它是由程序员人为创造的, 实现函数异步执行. 协程(Coroutine),也可以被称为微线程,是一种用户太内的上下文切换技术,其实就是通过一个线程实现代码块相互切换执行.看上去像子程序,但执行过程中,在子程序内部可中断,然后转而执行别的

  • 浅谈Python处理json字符串为什么不建议使用eval()

    目录 一.前言 二.Json.loads与eval 性能对比 1. eval 2. json.loads 一.前言 最近发现一些小伙伴使用eval来处理json,而且为了能够将json成功转为字典而不报错,还写了如下的赋值操作 (因为json中空为null,假为false,真为true与Python的表达不一样,如果不进行下面代码的赋值,用eval转换就会报错): null=None false=False true=True 其实Python的标准库中有处理json的库,就叫json,比如要把

  • 浅谈Python爬取网页的编码处理

    背景 中秋的时候,一个朋友给我发了一封邮件,说他在爬链家的时候,发现网页返回的代码都是乱码,让我帮他参谋参谋(中秋加班,真是敬业= =!),其实这个问题我很早就遇到过,之前在爬小说的时候稍微看了一下,不过没当回事,其实这个问题就是对编码的理解不到位导致的. 问题 很普通的一个爬虫代码,代码是这样的: # ecoding=utf-8 import re import requests import sys reload(sys) sys.setdefaultencoding('utf8') url

  • 浅谈Python使用Bottle来提供一个简单的web服务

    介绍 今天有个不正经的需求,就是要快速做一个restful api的性能测试,要求测试在海量作业数据的情况下客户端分页获取所有作业的性能.因为只是一个小的的测试工作,所以就想到了Bottle框架作为Web服务器,这里就简单说说怎样使用Bottle框架. 安装 pip install bottle 启动服务 运行下面的python脚本即可启动一个Web服务. from bottle import route, run, request @route('/hello') def hello(): r

  • 浅谈Python中的全局锁(GIL)问题

    CPU-bound(计算密集型) 和I/O bound(I/O密集型) 计算密集型任务(CPU-bound) 的特点是要进行大量的计算,占据着主要的任务,消耗CPU资源,一直处于满负荷状态.比如复杂的加减乘除.计算圆周率.对视频进行高清解码等等,全靠CPU的运算能力.这种计算密集型任务虽然也可以用多任务完成,但是任务越多,花在任务切换的时间就越多,CPU执行任务的效率就越低,所以,要最高效地利用CPU,计算密集型任务同时进行的数量应当等于CPU的核心数. 计算密集型任务由于主要消耗CPU资源,因

  • 浅谈Python线程的同步互斥与死锁

    线程间通信方法 1. 通信方法 线程间使用全局变量进行通信     2. 共享资源争夺 共享资源:多个进程或者线程都可以操作的资源称为共享资源.对共享资源的操作代码段称为临界区. 影响 : 对共享资源的无序操作可能会带来数据的混乱,或者操作错误.此时往往需要同步互斥机制协调操作顺序.     3. 同步互斥机制 同步 : 同步是一种协作关系,为完成操作,多进程或者线程间形成一种协调,按照必要的步骤有序执行操作.两个或两个以上的进程或线程在运行过程中协同步调,按预定的先后次序运行.比如 A 任务的

随机推荐