kaggle+mnist实现手写字体识别

现在的许多手写字体识别代码都是基于已有的mnist手写字体数据集进行的,而kaggle需要用到网站上给出的数据集并生成测试集的输出用于提交。这里选择keras搭建卷积网络进行识别,可以直接生成测试集的结果,最终结果识别率大概97%左右的样子。

# -*- coding: utf-8 -*-
"""
Created on Tue Jun 6 19:07:10 2017

@author: Administrator
"""

from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Convolution2D, MaxPooling2D
from keras.utils import np_utils
import os
import pandas as pd
import numpy as np
from tensorflow.examples.tutorials.mnist import input_data
from keras import backend as K
import tensorflow as tf

# 全局变量
batch_size = 100
nb_classes = 10
epochs = 20
# input image dimensions
img_rows, img_cols = 28, 28
# number of convolutional filters to use
nb_filters = 32
# size of pooling area for max pooling
pool_size = (2, 2)
# convolution kernel size
kernel_size = (3, 3) 

inputfile='F:/data/kaggle/mnist/train.csv'
inputfile2= 'F:/data/kaggle/mnist/test.csv'
outputfile= 'F:/data/kaggle/mnist/test_label.csv'

pwd = os.getcwd()
os.chdir(os.path.dirname(inputfile))
train= pd.read_csv(os.path.basename(inputfile)) #从训练数据文件读取数据
os.chdir(pwd)

pwd = os.getcwd()
os.chdir(os.path.dirname(inputfile))
test= pd.read_csv(os.path.basename(inputfile2)) #从测试数据文件读取数据
os.chdir(pwd)

x_train=train.iloc[:,1:785] #得到特征数据
y_train=train['label']
y_train = np_utils.to_categorical(y_train, 10)

mnist=input_data.read_data_sets("MNIST_data/",one_hot=True) #导入数据
x_test=mnist.test.images
y_test=mnist.test.labels
# 根据不同的backend定下不同的格式
if K.image_dim_ordering() == 'th':
 x_train=np.array(x_train)
 test=np.array(test)
 x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
 x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
 input_shape = (1, img_rows, img_cols)
 test = test.reshape(test.shape[0], 1, img_rows, img_cols)
else:
 x_train=np.array(x_train)
 test=np.array(test)
 x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
 X_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
 test = test.reshape(test.shape[0], img_rows, img_cols, 1)
 input_shape = (img_rows, img_cols, 1) 

x_train = x_train.astype('float32')
x_test = X_test.astype('float32')
test = test.astype('float32')
x_train /= 255
X_test /= 255
test/=255
print('X_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
print(test.shape[0], 'testOuput samples') 

model=Sequential()#model initial
model.add(Convolution2D(nb_filters, (kernel_size[0], kernel_size[1]),
      padding='same',
      input_shape=input_shape)) # 卷积层1
model.add(Activation('relu')) #激活层
model.add(Convolution2D(nb_filters, (kernel_size[0], kernel_size[1]))) #卷积层2
model.add(Activation('relu')) #激活层
model.add(MaxPooling2D(pool_size=pool_size)) #池化层
model.add(Dropout(0.25)) #神经元随机失活
model.add(Flatten()) #拉成一维数据
model.add(Dense(128)) #全连接层1
model.add(Activation('relu')) #激活层
model.add(Dropout(0.5)) #随机失活
model.add(Dense(nb_classes)) #全连接层2
model.add(Activation('softmax')) #Softmax评分 

#编译模型
model.compile(loss='categorical_crossentropy',
    optimizer='adadelta',
    metrics=['accuracy'])
#训练模型 

model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs,verbose=1)
model.predict(x_test)
#评估模型
score = model.evaluate(x_test, y_test, verbose=0)
print('Test score:', score[0])
print('Test accuracy:', score[1]) 

y_test=model.predict(test)

sess=tf.InteractiveSession()
y_test=sess.run(tf.arg_max(y_test,1))
y_test=pd.DataFrame(y_test)
y_test.to_csv(outputfile)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • tensorflow实现softma识别MNIST

    识别MNIST已经成了深度学习的hello world,所以每次例程基本都会用到这个数据集,这个数据集在tensorflow内部用着很好的封装,因此可以方便地使用. 这次我们用tensorflow搭建一个softmax多分类器,和之前搭建线性回归差不多,第一步是通过确定变量建立图模型,然后确定误差函数,最后调用优化器优化. 误差函数与线性回归不同,这里因为是多分类问题,所以使用了交叉熵. 另外,有一点值得注意的是,这里构建模型时我试图想拆分多个函数,但是后来发现这样做难度很大,因为图是在规定变量

  • PyTorch CNN实战之MNIST手写数字识别示例

    简介 卷积神经网络(Convolutional Neural Network, CNN)是深度学习技术中极具代表的网络结构之一,在图像处理领域取得了很大的成功,在国际标准的ImageNet数据集上,许多成功的模型都是基于CNN的. 卷积神经网络CNN的结构一般包含这几个层: 输入层:用于数据的输入 卷积层:使用卷积核进行特征提取和特征映射 激励层:由于卷积也是一种线性运算,因此需要增加非线性映射 池化层:进行下采样,对特征图稀疏处理,减少数据运算量. 全连接层:通常在CNN的尾部进行重新拟合,减

  • tensorflow实现KNN识别MNIST

    KNN算法算是最简单的机器学习算法之一了,这个算法最大的特点是没有训练过程,是一种懒惰学习,这种结构也可以在tensorflow实现. KNN的最核心就是距离度量方式,官方例程给出的是L1范数的例子,我这里改成了L2范数,也就是我们常说的欧几里得距离度量,另外,虽然是叫KNN,意思是选取k个最接近的元素来投票产生分类,但是这里只是用了最近的那个数据的标签作为预测值了. __author__ = 'freedom' import tensorflow as tf import numpy as n

  • kaggle+mnist实现手写字体识别

    现在的许多手写字体识别代码都是基于已有的mnist手写字体数据集进行的,而kaggle需要用到网站上给出的数据集并生成测试集的输出用于提交.这里选择keras搭建卷积网络进行识别,可以直接生成测试集的结果,最终结果识别率大概97%左右的样子. # -*- coding: utf-8 -*- """ Created on Tue Jun 6 19:07:10 2017 @author: Administrator """ from keras.mo

  • PyTorch实现MNIST数据集手写数字识别详情

    目录 一.PyTorch是什么? 二.程序示例 1.引入必要库 2.下载数据集 3.加载数据集 4.搭建CNN模型并实例化 5.交叉熵损失函数损失函数及SGD算法优化器 6.训练函数 7.测试函数 8.运行 三.总结 前言: 本篇文章基于卷积神经网络CNN,使用PyTorch实现MNIST数据集手写数字识别. 一.PyTorch是什么? PyTorch 是一个 Torch7 团队开源的 Python 优先的深度学习框架,提供两个高级功能: 强大的 GPU 加速 Tensor 计算(类似 nump

  • 详解PyTorch手写数字识别(MNIST数据集)

    MNIST 手写数字识别是一个比较简单的入门项目,相当于深度学习中的 Hello World,可以让我们快速了解构建神经网络的大致过程.虽然网上的案例比较多,但还是要自己实现一遍.代码采用 PyTorch 1.0 编写并运行. 导入相关库 import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets, t

  • Python使用gluon/mxnet模块实现的mnist手写数字识别功能完整示例

    本文实例讲述了Python使用gluon/mxnet模块实现的mnist手写数字识别功能.分享给大家供大家参考,具体如下: import gluonbook as gb from mxnet import autograd,nd,init,gluon from mxnet.gluon import loss as gloss,data as gdata,nn,utils as gutils import mxnet as mx net = nn.Sequential() with net.nam

  • Python tensorflow实现mnist手写数字识别示例【非卷积与卷积实现】

    本文实例讲述了Python tensorflow实现mnist手写数字识别.分享给大家供大家参考,具体如下: 非卷积实现 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data data_path = 'F:\CNN\data\mnist' mnist_data = input_data.read_data_sets(data_path,one_hot=True) #offline da

  • pytorch 利用lstm做mnist手写数字识别分类的实例

    代码如下,U我认为对于新手来说最重要的是学会rnn读取数据的格式. # -*- coding: utf-8 -*- """ Created on Tue Oct 9 08:53:25 2018 @author: www """ import sys sys.path.append('..') import torch import datetime from torch.autograd import Variable from torch im

  • Python利用逻辑回归模型解决MNIST手写数字识别问题详解

    本文实例讲述了Python利用逻辑回归模型解决MNIST手写数字识别问题.分享给大家供大家参考,具体如下: 1.MNIST手写识别问题 MNIST手写数字识别问题:输入黑白的手写阿拉伯数字,通过机器学习判断输入的是几.可以通过TensorFLow下载MNIST手写数据集,通过import引入MNIST数据集并进行读取,会自动从网上下载所需文件. %matplotlib inline import tensorflow as tf import tensorflow.examples.tutori

  • Tensorflow训练MNIST手写数字识别模型

    本文实例为大家分享了Tensorflow训练MNIST手写数字识别模型的具体代码,供大家参考,具体内容如下 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 # 输入层节点=图片像素=28x28=784 OUTPUT_NODE = 10 # 输出层节点数=图片类别数目 LAYER1_NODE = 500 # 隐藏层节点数,只有一个隐藏层 BATCH

  • 如何将tensorflow训练好的模型移植到Android (MNIST手写数字识别)

    [尊重原创,转载请注明出处]https://blog.csdn.net/guyuealian/article/details/79672257 项目Github下载地址:https://github.com/PanJinquan/Mnist-tensorFlow-AndroidDemo 本博客将以最简单的方式,利用TensorFlow实现了MNIST手写数字识别,并将Python TensoFlow训练好的模型移植到Android手机上运行.网上也有很多移植教程,大部分是在Ubuntu(Linu

随机推荐