Python中尝试多线程编程的一个简明例子

综述
    多线程是程序设计中的一个重要方面,尤其是在服务器Deamon程序方面。无论何种系统,线程调度的开销都比传统的进程要快得多。
  Python可以方便地支持多线程。可以快速创建线程、互斥锁、信号量等等元素,支持线程读写同步互斥。美中不足的是,Python的运行在Python 虚拟机上,创建的多线程可能是虚拟的线程,需要由Python虚拟机来轮询调度,这大大降低了Python多线程的可用性。希望高版本的Python可以 解决这个问题,发挥多CPU的最大效率。
  网上有些朋友说要获得真正多CPU的好处,有两种方法:
  1.可以创建多个进程而不是线程,进程数和cpu一样多。
  2.使用Jython 或 IronPython,可以得到真正的多线程。
  闲话少说,下面看看Python如何建立线程
  Python线程创建
  使用threading模块的 Thread类
  类接口如下

代码如下:

class  Thread( group=None, target=None, name=None, args=(), kwargs={})

需要关注的参数是target和args. target 是需要子线程运行的目标函数,args是函数的参数,以tuple的形式传递。
  以下代码创建一个指向函数worker 的子线程

代码如下:

def worker(a_tid,a_account):
     ...
th = threading.Thread(target=worker,args=(i,acc) ) ;

启动这个线程


代码如下:

th.start()

等待线程返回


代码如下:

threading.Thread.join(th)

或者th.join()
如果你可以对要处理的数据进行很好的划分,而且线程之间无须通信,那么你可以使用:创建=》运行=》回收的方式编写你的多线程程序。但是如果线程之间需要访问共同的对象,则需要引入互斥锁或者信号量对资源进行互斥访问。
 下面讲讲如何创建互斥锁
创建锁


代码如下:

g_mutex = threading.Lock()
  ....

使用锁 
    

代码如下:

for  ... :
        #锁定,从下一句代码到释放前互斥访问
        g_mutex.acquire()
        a_account.deposite(1)
        #释放
        g_mutex.release()

最后,模拟一个公交地铁IC卡缴车费的多线程程序
  有10个读卡器,每个读卡器收费器每次扣除用户一块钱进入总账中,每读卡器每天一共被刷10000000次。账户原有100块。所以最后的总账应该为10000100。先不使用互斥锁来进行锁定(注释掉了锁定代码),看看后果如何。

import time,datetime
import threading

def worker(a_tid,a_account):
 global g_mutex
 print("Str " , a_tid, datetime.datetime.now() )
 for i in range(1000000):
  #g_mutex.acquire()
  a_account.deposite(1)
  #g_mutex.release()
 print("End " , a_tid , datetime.datetime.now() )

class Account:
 def __init__ (self, a_base ):
  self.m_amount=a_base
 def deposite(self,a_amount):
  self.m_amount+=a_amount
 def withdraw(self,a_amount):
  self.m_amount-=a_amount 

if __name__ == "__main__":
 global g_mutex
 count = 0
 dstart = datetime.datetime.now()
 print("Main Thread Start At: ", dstart)
 #init thread_pool
 thread_pool = []
 #init mutex
 g_mutex = threading.Lock()
 # init thread items
 acc = Account(100)
 for i in range(10):
  th = threading.Thread(target=worker,args=(i,acc) ) ;
  thread_pool.append(th)

 # start threads one by one
 for i in range(10):
  thread_pool[i].start()

 #collect all threads
 for i in range(10):
  threading.Thread.join(thread_pool[i])
 dend = datetime.datetime.now()
 print("count=", acc.m_amount)
 print("Main Thread End at: ", dend, " time span ", dend-dstart)

注意,先不用互斥锁进行临界段访问控制,运行结果如下:

从结果看到,程序确实是多线程运行的。但是由于没有对对象Account进行互斥访问,所以结果是错误的,只有3434612,比原预计少了很多。

打开锁后:

这次可以看到,结果正确了。运行时间比不进行互斥多了很多,不过这也是同步的代价。
同时发现,写多线程,多进程类的程序,不能用自带的idle来运行。会有错误。

(0)

相关推荐

  • 详解Python中的多线程编程

    一.简介 多线程编程技术可以实现代码并行性,优化处理能力,同时功能的更小划分可以使代码的可重用性更好.Python中threading和Queue模块可以用来实现多线程编程. 二.详解 1.线程和进程        进程(有时被称为重量级进程)是程序的一次执行.每个进程都有自己的地址空间.内存.数据栈以及其它记录其运行轨迹的辅助数据.操作系统管理在其上运行的所有进程,并为这些进程公平地分配时间.进程也可以通过fork和spawn操作来完成其它的任务,不过各个进程有自己的内存空间.数据栈等,所以只

  • Python实现检测服务器是否可以ping通的2种方法

    好想在2014结束前再赶出个10篇博文来,~(>_<)~,不写博客真不是一个好兆头,至少说明对学习的欲望和对知识的研究都不是那么积极了,如果说这1天的时间我能赶出几篇精致的博文,你们信不信,哈哈,反正我是信了... python检测服务器是否ping通的2种方法 1.第一种比较挫,就是用ping,python调用shell,这个适用于较少的服务器数量,几百台已经很慢了(当然是说python同步的方法,要是nodejs异步方式还是很快的,但是nodejs CPU计算不行,所以尝试了下只能200台

  • python threading模块操作多线程介绍

    python是支持多线程的,并且是native的线程.主要是通过thread和threading这两个模块来实现的.thread是比较底层的模块,threading是对thread做了一些包装的,可以更加方便的被使用.这里需要提一下的是python对线程的支持还不够完善,不能利用多CPU,但是下个版本的python中已经考虑改进这点,让我们拭目以待吧. threading模块里面主要是对一些线程的操作对象化了,创建了叫Thread的class.一般来说,使用线程有两种模式,一种是创建线程要执行的

  • Python多线程和队列操作实例

    Python3,开一个线程,间隔1秒把一个递增的数字写入队列,再开一个线程,从队列中取出数字并打印到终端 复制代码 代码如下: #! /usr/bin/env python3 import time import threading import queue # 一个线程,间隔一定的时间,把一个递增的数字写入队列 # 生产者 class Producer(threading.Thread): def __init__(self, work_queue):         super().__in

  • python实现ping的方法

    本文实例讲述了python实现ping的方法.分享给大家供大家参考.具体如下: #!/usr/bin/env python #coding:utf-8 import os, sys, socket, struct, select, time # From /usr/include/linux/icmp.h; your milage may vary. ICMP_ECHO_REQUEST = 8 # Seems to be the same on Solaris. def checksum(sou

  • Python多线程下载文件的方法

    本文实例讲述了Python多线程下载文件的方法.分享给大家供大家参考.具体实现方法如下: import httplib import urllib2 import time from threading import Thread from Queue import Queue from time import sleep proxy = 'your proxy'; opener = urllib2.build_opener( urllib2.ProxyHandler({'http':proxy

  • Python实现快速多线程ping的方法

    本文实例讲述了Python实现快速多线程ping的方法.分享给大家供大家参考.具体如下: #!/usr/bin/python #_*_coding:utf-8_*_ # ''' 名称:快速多线程ping程序 开发:gyhong gyh9711 日期:20:51 2011-04-25 ''' import pexpect import datetime from threading import Thread host=["192.168.1.1","192.168.1.123

  • Python3中多线程编程的队列运作示例

    Python3,开一个线程,间隔1秒把一个递增的数字写入队列,再开一个线程,从队列中取出数字并打印到终端 #! /usr/bin/env python3 import time import threading import queue # 一个线程,间隔一定的时间,把一个递增的数字写入队列 # 生产者 class Producer(threading.Thread): def __init__(self, work_queue): super().__init__() # 必须调用 self.

  • 浅析Python多线程下的变量问题

    在多线程环境下,每个线程都有自己的数据.一个线程使用自己的局部变量比使用全局变量好,因为局部变量只有线程自己能看见,不会影响其他线程,而全局变量的修改必须加锁. 但是局部变量也有问题,就是在函数调用的时候,传递起来很麻烦: def process_student(name): std = Student(name) # std是局部变量,但是每个函数都要用它,因此必须传进去: do_task_1(std) do_task_2(std) def do_task_1(std): do_subtask

  • Python中尝试多线程编程的一个简明例子

    综述     多线程是程序设计中的一个重要方面,尤其是在服务器Deamon程序方面.无论何种系统,线程调度的开销都比传统的进程要快得多.   Python可以方便地支持多线程.可以快速创建线程.互斥锁.信号量等等元素,支持线程读写同步互斥.美中不足的是,Python的运行在Python 虚拟机上,创建的多线程可能是虚拟的线程,需要由Python虚拟机来轮询调度,这大大降低了Python多线程的可用性.希望高版本的Python可以 解决这个问题,发挥多CPU的最大效率.   网上有些朋友说要获得真

  • 在Python下尝试多线程编程

    多任务可以由多进程完成,也可以由一个进程内的多线程完成. 我们前面提到了进程是由若干线程组成的,一个进程至少有一个线程. 由于线程是操作系统直接支持的执行单元,因此,高级语言通常都内置多线程的支持,Python也不例外,并且,Python的线程是真正的Posix Thread,而不是模拟出来的线程. Python的标准库提供了两个模块:thread和threading,thread是低级模块,threading是高级模块,对thread进行了封装.绝大多数情况下,我们只需要使用threading

  • Python中的并发编程实例

    一.简介 我们将一个正在运行的程序称为进程.每个进程都有它自己的系统状态,包含内存状态.打开文件列表.追踪指令执行情况的程序指针以及一个保存局部变量的调用栈.通常情况下,一个进程依照一个单序列控制流顺序执行,这个控制流被称为该进程的主线程.在任何给定的时刻,一个程序只做一件事情. 一个程序可以通过Python库函数中的os或subprocess模块创建新进程(例如os.fork()或是subprocess.Popen()).然而,这些被称为子进程的进程却是独立运行的,它们有各自独立的系统状态以及

  • python中asyncio异步编程学习

    1.   想学asyncio,得先了解协程 携程的意义: 计算型的操作,利用协程来回切换执行,没有任何意义,来回切换并保存状态 反倒会降低性能. IO型的操作,利用协程在IO等待时间就去切换执行其他任务,当IO操作结束后再自动回调,那么就会大大节省资源并提供性能,从而实现异步编程(不等待任务结束就可以去执行其他代码 2.协程和多线程之间的共同点和区别: 共同点: 都是并发操作,多线程同一时间点只能有一个线程在执行,协程同一时间点只能有一个任务在执行: 不同点: 多线程,是在I/O阻塞时通过切换线

  • python中的多线程实例教程

    本文以实例形式较为详细的讲述了Python中多线程的用法,在Python程序设计中有着比较广泛的应用.分享给大家供大家参考之用.具体分析如下: python中关于多线程的操作可以使用thread和threading模块来实现,其中thread模块在Py3中已经改名为_thread,不再推荐使用.而threading模块是在thread之上进行了封装,也是推荐使用的多线程模块,本文主要基于threading模块进行介绍.在某些版本中thread模块可能不存在,要使用dump_threading来代

  • Python中py文件引用另一个py文件变量的方法

    最近自己初学Python,在编程是遇到一个问题就是,怎样在一个py文件中使用另一个py文件中变量,问题如下: demo1代码 import requests r = requests.get("http://www.baidu.com") r.encoding = r.apparent_encoding demo = r.text demo beauful1代码: from bs4 import BeautifulSoup soup = BeautifulSoup(demo,"

  • Python中的多线程实例(简单易懂)

    目录 1.python中显示当前线程信息的属性和方法 2.添加一个线程 3.线程中的join函数 4.使用Queue存储线程的结果 5.线程锁lock 前言: 多线程简单理解就是:一个CPU,也就是单核,将时间切成一片一片的,CPU轮转着去处理一件一件的事情,到了规定的时间片就处理下一件事情. 1.python中显示当前线程信息的属性和方法 # coding:utf-8 # 导入threading包 import threading if __name__ == "__main__":

  • 浅析Python中的元编程

    目录 什么是元编程 元编程应用场景 综合实战 什么是元编程 Python元编程是指在运行时对Python代码进行操作的技术,它可以动态地生成.修改和执行代码,从而实现一些高级的编程技巧.Python的元编程包括元类.装饰器.动态属性和动态导入等技术,这些技术都可以帮助我们更好地理解和掌握Python语言的特性和机制.元编程在一些场景下非常有用,比如实现ORM框架.实现特定领域的DSL.动态修改类的行为等.掌握好Python元编程技术可以提高我们的编程能力和代码质量. 想要搞定元编程,必须要理解和

  • python中的PywebIO模块制作一个数据大屏

    目录 一.PywebIO介绍 二.PywebIO和Pyecharts的组合 三.PywebIO和Bokeh的组合 四.基于浏览器的GUI应用 一.PywebIO介绍 Python当中的PywebIO模块可以帮助开发者在不具备HTML和JavaScript的情况下也能够迅速构建Web应用或者是基于浏览器的GUI应用,PywebIO还可以和一些常用的可视化模块联用,制作成一个可视化大屏, 我们先来安装好需要用到的模块 pip install pywebio pip install cutechart

随机推荐