Python堆排序原理与实现方法详解

本文实例讲述了Python堆排序原理与实现方法。分享给大家供大家参考,具体如下:

在这里要事先说明一下我也是新手,很多东西我了解不是很深入,写算法完全是锻炼自己逻辑能力同时顺带帮助读研的朋友么解决一些实际问题。所以很多时候考虑的东西不是很全面能请各位看到博文的大牛们指正。对于排序算法说实在的我觉得已经写烂了,但是为什么还是要过一遍呢?还是为了能够打牢基础。说一下自己的看法,对于已经的玩烂的算法因该怎么学。首先最重要的还是了解算法的基本模型和算法思想,我觉得这是非常重要的。其次的话首先先尝试自己实现算法每个步骤的功能,当遇到瓶颈的时候回去看算法思想。当你写出来的时候就应该去网上找找有没有更好的实现方法。编程最大的魅力在于每个人都有每个人的套路。然后去思考自己还有哪些地方写的不够好。写算法实际上目标只有两个,对基础语法的巩固和对算法思想的理解。

堆排序

在这里首先要先解释一下什么是堆,堆栈是计算机的两种最基本的数据结构。堆的特点就是FIFO(first in first out)先进先出,这里的话我觉得可以理解成树的结构。堆在接收数据的时候先接收的数据会被先弹出。

栈的特性正好与堆相反,是属于FILO(first in/last out)先进后出的类型。栈处于一级缓存而堆处于二级缓存中。这个不是本文重点所以不做过多展开。

堆排序节点访问和操作定义

堆节点的访问

在这里我们借用wiki的定义来说明:

通常堆是通过一维数组来实现的。在阵列起始位置为0的情况中

(1)父节点i的左子节点在位置(2*i+1);
(2)父节点i的右子节点在位置(2*i+2);
(3)子节点i的父节点在位置floor((i-1)/2);

堆操作

堆可以分为大根堆和小根堆,这里用最大堆的情况来定义操作:

(1)最大堆调整(MAX_Heapify):将堆的末端子节点作调整,使得子节点永远小于父节点。这是核心步骤,在建堆和堆排序都会用到。比较i的根节点和与其所对应i的孩子节点的值。当i根节点的值比左孩子节点的值要小的时候,就把i根节点和左孩子节点所对应的值交换,当i根节点的值比右孩子的节点所对应的值要小的时候,就把i根节点和右孩子节点所对应的值交换。然后再调用堆调整这个过程,可见这是一个递归的过程。

(2)建立最大堆(Build_Max_Heap):将堆所有数据重新排序。建堆的过程其实就是不断做最大堆调整的过程,从len/2出开始调整,一直比到第一个节点。

(3)堆排序(HeapSort):移除位在第一个数据的根节点,并做最大堆调整的递归运算。堆排序是利用建堆和堆调整来进行的。首先先建堆,然后将堆的根节点选出与最后一个节点进行交换,然后将前面len-1个节点继续做堆调整的过程。直到将所有的节点取出,对于n个数我们只需要做n-1次操作。

这里用网上的一张直观图来感受一下

代码:

# -*- coding: utf-8 -*-
#! python2
import random
def MAX_Heapify(heap,HeapSize,root):#在堆中做结构调整使得父节点的值大于子节点
  left = 2*root + 1
  right = left + 1
  larger = root
  if left < HeapSize and heap[larger] < heap[left]:
    larger = left
  if right < HeapSize and heap[larger] < heap[right]:
    larger = right
  if larger != root:#如果做了堆调整则larger的值等于左节点或者右节点的,这个时候做对调值操作
    heap[larger],heap[root] = heap[root],heap[larger]
    MAX_Heapify(heap, HeapSize, larger)
def Build_MAX_Heap(heap):#构造一个堆,将堆中所有数据重新排序
  HeapSize = len(heap)#将堆的长度当独拿出来方便
  for i in xrange((HeapSize -2)//2,-1,-1):#从后往前出数
    MAX_Heapify(heap,HeapSize,i)
def HeapSort(heap):#将根节点取出与最后一位做对调,对前面len-1个节点继续进行对调整过程。
  Build_MAX_Heap(heap)
  for i in range(len(heap)-1,-1,-1):
    heap[0],heap[i] = heap[i],heap[0]
    MAX_Heapify(heap, i, 0)
  return heap
if __name__ == '__main__':
  a = [30,50,57,77,62,78,94,80,84]
  print a
  HeapSort(a)
  print a
  b = [random.randint(1,1000) for i in range(1000)]
  print b
  HeapSort(b)
  print b

运行结果:

[30, 50, 57, 77, 62, 78, 94, 80, 84]
[30, 50, 57, 62, 77, 78, 80, 84, 94]
[107, 115, 207, 919, 128, 651, 534, 546, 217, 295, 54, 202, 498, 620, 174, 897, 873, 112, 873, 729, 588, 669, 994, 773, 462, 550, 347, 597, 440, 426, 271, 677, 323, 302, 604, 154, 589, 871, 235, 305, 502, 743, 575, 53, 130, 686, 726, 959, 980, 884, 542, 246, 292, 226, 608, 357, 229, 168, 415, 671, 972, 142, 472, 375, 522, 486, 241, 368, 839, 841, 137, 545, 427, 601, 476, 229, 757, 601, 136, 506, 394, 975, 162, 163, 26, 776, 886, 82, 37, 248, 47, 246, 23, 895, 623, 373, 147, 109, 553, 176, 204, 530, 927, 656, 153, 487, 743, 113, 20, 334, 554, 850, 510, 423, 373, 207, 795, 403, 499, 509, 531, 256, 920, 313, 694, 322, 100, 825, 578, 954, 526, 92, 820, 9, 931, 303, 408, 132, 833, 194, 902, 766, 14, 140, 729, 328, 636, 316, 536, 232, 687, 425, 811, 432, 955, 715, 339, 861, 736, 411, 901, 609, 353, 97, 330, 896, 852, 1000, 828, 5, 879, 41, 642, 719, 35, 621, 742, 285, 715, 987, 246, 641, 636, 993, 368, 140, 319, 647, 555, 436, 479, 85, 669, 899, 556, 71, 237, 189, 211, 106, 623, 164, 371, 137, 730, 679, 491, 981, 372, 483, 50, 676, 125, 868, 903, 33, 555, 710, 199, 835, 458, 311, 384, 81, 784, 338, 3, 665, 934, 362, 122, 816, 2, 439, 869, 94, 806, 760, 309, 372, 360, 61, 756, 995, 642, 652, 176, 85, 735, 894, 745, 654, 734, 699, 933, 59, 168, 311, 313, 758, 753, 122, 195, 902, 527, 305, 106, 281, 321, 681, 323, 858, 877, 278, 966, 706, 947, 648, 893, 247, 882, 931, 859, 675, 243, 129, 424, 475, 478, 946, 720, 881, 737, 470, 252, 921, 382, 659, 441, 854, 553, 134, 116, 183, 285, 353, 285, 840, 80, 661, 353, 556, 916, 861, 901, 496, 888, 686, 70, 600, 998, 457, 707, 980, 572, 950, 111, 3, 320, 620, 181, 796, 731, 892, 629, 106, 539, 58, 173, 126, 922, 381, 129, 859, 63, 633, 723, 628, 661, 128, 582, 893, 479, 379, 831, 863, 245, 49, 735, 419, 713, 887, 833, 399, 26, 698, 280, 839, 220, 604, 764, 782, 974, 912, 939, 604, 26, 229, 130, 949, 99, 671, 481, 885, 907, 116, 621, 546, 201, 21, 213, 242, 172, 899, 627, 996, 933, 957, 168, 386, 788, 643, 200, 646, 32, 496, 722, 375, 271, 553, 542, 370, 904, 393, 74, 42, 948, 428, 155, 311, 486, 708, 936, 819, 201, 763, 927, 596, 26, 902, 467, 31, 631, 540, 472, 909, 809, 832, 88, 240, 934, 598, 531, 337, 839, 552, 183, 694, 611, 693, 518, 397, 897, 526, 849, 15, 776, 438, 133, 771, 412, 174, 619, 245, 711, 423, 383, 556, 604, 310, 139, 879, 995, 870, 173, 98, 174, 441, 627, 712, 637, 470, 350, 509, 261, 648, 443, 152, 690, 486, 901, 52, 425, 45, 684, 243, 94, 655, 679, 534, 31, 778, 405, 316, 8, 640, 236, 903, 526, 579, 43, 595, 884, 225, 188, 483, 909, 890, 846, 794, 682, 649, 569, 1000, 840, 292, 614, 986, 305, 800, 763, 563, 266, 134, 202, 156, 231, 896, 174, 696, 914, 235, 302, 358, 538, 595, 770, 462, 13, 960, 768, 106, 119, 370, 602, 807, 622, 770, 359, 768, 209, 314, 195, 590, 527, 275, 775, 785, 271, 557, 680, 756, 399, 426, 730, 57, 905, 643, 852, 406, 932, 204, 757, 348, 655, 812, 891, 887, 214, 171, 296, 279, 81, 383, 668, 271, 335, 345, 541, 997, 659, 671, 732, 525, 811, 612, 704, 23, 1000, 511, 731, 505, 818, 815, 766, 689, 978, 721, 987, 546, 824, 753, 277, 838, 16, 382, 910, 332, 301, 727, 851, 395, 310, 649, 432, 864, 894, 756, 400, 116, 31, 990, 232, 611, 75, 969, 600, 823, 58, 236, 378, 489, 222, 269, 382, 745, 984, 278, 530, 994, 493, 182, 681, 822, 664, 241, 126, 502, 167, 546, 710, 956, 647, 454, 776, 525, 46, 537, 550, 374, 497, 787, 577, 540, 538, 552, 187, 862, 392, 266, 269, 885, 563, 430, 13, 853, 936, 566, 366, 236, 962, 877, 15, 812, 231, 929, 123, 484, 331, 237, 310, 835, 643, 55, 85, 345, 341, 86, 742, 852, 309, 489, 414, 295, 288, 464, 513, 573, 322, 785, 697, 988, 425, 376, 677, 56, 833, 482, 61, 611, 701, 709, 420, 682, 74, 690, 800, 962, 828, 722, 194, 524, 692, 516, 576, 854, 942, 682, 265, 710, 826, 648, 769, 843, 424, 387, 91, 256, 352, 378, 649, 660, 479, 208, 75, 570, 394, 372, 736, 701, 464, 430, 704, 395, 425, 377, 724, 349, 204, 281, 317, 711, 337, 953, 599, 615, 93, 395, 926, 78, 447, 649, 893, 928, 63, 763, 978, 920, 426, 370, 524, 312, 820, 885, 667, 298, 18, 170, 657, 698, 483, 532, 891, 486, 263, 480, 648, 898, 923, 288, 51, 786, 733, 782, 116, 471, 440, 703, 600, 983, 479, 19, 983, 145, 88, 781, 899, 565, 258, 862, 374, 4, 634, 560, 691, 875, 735, 622, 646, 291, 782, 562, 249, 640, 263, 62, 638, 510, 237, 653, 990, 926, 805, 717, 32, 513, 502, 217, 273, 905, 266, 554, 922, 950, 538, 322, 347, 230, 687, 359, 452, 360, 211, 755, 44, 898, 611, 431, 610, 450, 526, 771, 933, 179, 132, 326, 884, 966, 870, 957, 523, 381, 917, 368, 845, 714, 588, 357, 230, 436, 924, 865, 341, 139, 239, 971, 433, 452, 794, 737, 814, 368, 655, 442, 870, 691, 564, 384, 480, 235, 322, 485, 867, 404, 597, 955, 83, 432, 352, 183, 45, 486, 210, 270, 264, 213, 722, 283, 582, 1, 521, 804, 846, 261, 540, 494, 260, 168, 758, 873, 543, 409, 313, 397, 386, 730, 692, 420, 299, 26, 489, 838, 278, 415, 376, 896, 416, 936, 569, 945, 485, 672, 969, 997, 929, 981, 582, 59, 534, 547]
[1, 2, 3, 3, 4, 5, 8, 9, 13, 13, 14, 15, 15, 16, 18, 19, 20, 21, 23, 23, 26, 26, 26, 26, 26, 31, 31, 31, 32, 32, 33, 35, 37, 41, 42, 43, 44, 45, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 58, 59, 59, 61, 61, 62, 63, 63, 70, 71, 74, 74, 75, 75, 78, 80, 81, 81, 82, 83, 85, 85, 85, 86, 88, 88, 91, 92, 93, 94, 94, 97, 98, 99, 100, 106, 106, 106, 106, 107, 109, 111, 112, 113, 115, 116, 116, 116, 116, 119, 122, 122, 123, 125, 126, 126, 128, 128, 129, 129, 130, 130, 132, 132, 133, 134, 134, 136, 137, 137, 139, 139, 140, 140, 142, 145, 147, 152, 153, 154, 155, 156, 162, 163, 164, 167, 168, 168, 168, 168, 170, 171, 172, 173, 173, 174, 174, 174, 174, 176, 176, 179, 181, 182, 183, 183, 183, 187, 188, 189, 194, 194, 195, 195, 199, 200, 201, 201, 202, 202, 204, 204, 204, 207, 207, 208, 209, 210, 211, 211, 213, 213, 214, 217, 217, 220, 222, 225, 226, 229, 229, 229, 230, 230, 231, 231, 232, 232, 235, 235, 235, 236, 236, 236, 237, 237, 237, 239, 240, 241, 241, 242, 243, 243, 245, 245, 246, 246, 246, 247, 248, 249, 252, 256, 256, 258, 260, 261, 261, 263, 263, 264, 265, 266, 266, 266, 269, 269, 270, 271, 271, 271, 271, 273, 275, 277, 278, 278, 278, 279, 280, 281, 281, 283, 285, 285, 285, 288, 288, 291, 292, 292, 295, 295, 296, 298, 299, 301, 302, 302, 303, 305, 305, 305, 309, 309, 310, 310, 310, 311, 311, 311, 312, 313, 313, 313, 314, 316, 316, 317, 319, 320, 321, 322, 322, 322, 322, 323, 323, 326, 328, 330, 331, 332, 334, 335, 337, 337, 338, 339, 341, 341, 345, 345, 347, 347, 348, 349, 350, 352, 352, 353, 353, 353, 357, 357, 358, 359, 359, 360, 360, 362, 366, 368, 368, 368, 368, 370, 370, 370, 371, 372, 372, 372, 373, 373, 374, 374, 375, 375, 376, 376, 377, 378, 378, 379, 381, 381, 382, 382, 382, 383, 383, 384, 384, 386, 386, 387, 392, 393, 394, 394, 395, 395, 395, 397, 397, 399, 399, 400, 403, 404, 405, 406, 408, 409, 411, 412, 414, 415, 415, 416, 419, 420, 420, 423, 423, 424, 424, 425, 425, 425, 425, 426, 426, 426, 427, 428, 430, 430, 431, 432, 432, 432, 433, 436, 436, 438, 439, 440, 440, 441, 441, 442, 443, 447, 450, 452, 452, 454, 457, 458, 462, 462, 464, 464, 467, 470, 470, 471, 472, 472, 475, 476, 478, 479, 479, 479, 479, 480, 480, 481, 482, 483, 483, 483, 484, 485, 485, 486, 486, 486, 486, 486, 487, 489, 489, 489, 491, 493, 494, 496, 496, 497, 498, 499, 502, 502, 502, 505, 506, 509, 509, 510, 510, 511, 513, 513, 516, 518, 521, 522, 523, 524, 524, 525, 525, 526, 526, 526, 526, 527, 527, 530, 530, 531, 531, 532, 534, 534, 534, 536, 537, 538, 538, 538, 539, 540, 540, 540, 541, 542, 542, 543, 545, 546, 546, 546, 546, 547, 550, 550, 552, 552, 553, 553, 553, 554, 554, 555, 555, 556, 556, 556, 557, 560, 562, 563, 563, 564, 565, 566, 569, 569, 570, 572, 573, 575, 576, 577, 578, 579, 582, 582, 582, 588, 588, 589, 590, 595, 595, 596, 597, 597, 598, 599, 600, 600, 600, 601, 601, 602, 604, 604, 604, 604, 608, 609, 610, 611, 611, 611, 611, 612, 614, 615, 619, 620, 620, 621, 621, 622, 622, 623, 623, 627, 627, 628, 629, 631, 633, 634, 636, 636, 637, 638, 640, 640, 641, 642, 642, 643, 643, 643, 646, 646, 647, 647, 648, 648, 648, 648, 649, 649, 649, 649, 651, 652, 653, 654, 655, 655, 655, 656, 657, 659, 659, 660, 661, 661, 664, 665, 667, 668, 669, 669, 671, 671, 671, 672, 675, 676, 677, 677, 679, 679, 680, 681, 681, 682, 682, 682, 684, 686, 686, 687, 687, 689, 690, 690, 691, 691, 692, 692, 693, 694, 694, 696, 697, 698, 698, 699, 701, 701, 703, 704, 704, 706, 707, 708, 709, 710, 710, 710, 711, 711, 712, 713, 714, 715, 715, 717, 719, 720, 721, 722, 722, 722, 723, 724, 726, 727, 729, 729, 730, 730, 730, 731, 731, 732, 733, 734, 735, 735, 735, 736, 736, 737, 737, 742, 742, 743, 743, 745, 745, 753, 753, 755, 756, 756, 756, 757, 757, 758, 758, 760, 763, 763, 763, 764, 766, 766, 768, 768, 769, 770, 770, 771, 771, 773, 775, 776, 776, 776, 778, 781, 782, 782, 782, 784, 785, 785, 786, 787, 788, 794, 794, 795, 796, 800, 800, 804, 805, 806, 807, 809, 811, 811, 812, 812, 814, 815, 816, 818, 819, 820, 820, 822, 823, 824, 825, 826, 828, 828, 831, 832, 833, 833, 833, 835, 835, 838, 838, 839, 839, 839, 840, 840, 841, 843, 845, 846, 846, 849, 850, 851, 852, 852, 852, 853, 854, 854, 858, 859, 859, 861, 861, 862, 862, 863, 864, 865, 867, 868, 869, 870, 870, 870, 871, 873, 873, 873, 875, 877, 877, 879, 879, 881, 882, 884, 884, 884, 885, 885, 885, 886, 887, 887, 888, 890, 891, 891, 892, 893, 893, 893, 894, 894, 895, 896, 896, 896, 897, 897, 898, 898, 899, 899, 899, 901, 901, 901, 902, 902, 902, 903, 903, 904, 905, 905, 907, 909, 909, 910, 912, 914, 916, 917, 919, 920, 920, 921, 922, 922, 923, 924, 926, 926, 927, 927, 928, 929, 929, 931, 931, 932, 933, 933, 933, 934, 934, 936, 936, 936, 939, 942, 945, 946, 947, 948, 949, 950, 950, 953, 954, 955, 955, 956, 957, 957, 959, 960, 962, 962, 966, 966, 969, 969, 971, 972, 974, 975, 978, 978, 980, 980, 981, 981, 983, 983, 984, 986, 987, 987, 988, 990, 990, 993, 994, 994, 995, 995, 996, 997, 997, 998, 1000, 1000, 1000]

这里的函数名我就直接用了wiki上对堆操作的定义,方便理解,其实也是方便我以后来看。

时间复杂度

堆排序的时间复杂度分为两个部分一个是建堆的时候所耗费的时间,一个是进行堆调整的时候所耗费的时间。而堆排序则是调用了建堆和堆调整。

刚刚在上面也提及到了,建堆是一个线性过程,从len/2-0一直调用堆调整的过程,相当于o(h1)+o(h2)+…+o(hlen/2)这里的h表示节点深度,len/2表示节点深度,对于求和过程,结果为线性的O(n)

堆调整为一个递归的过程,调整堆的过程时间复杂度与堆的深度有关系,相当于lgn的操作。

因为建堆的时间复杂度是O(n),调整堆的时间复杂度是lgn,所以堆排序的时间复杂度是O(nlgn)。

PS:这里再为大家推荐一款关于排序的演示工具供大家参考:

在线动画演示插入/选择/冒泡/归并/希尔/快速排序算法过程工具:
http://tools.jb51.net/aideddesign/paixu_ys

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数据结构与算法教程》、《Python列表(list)操作技巧总结》、《Python编码操作技巧总结》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程》

希望本文所述对大家Python程序设计有所帮助。

您可能感兴趣的文章:

  • python 实现堆排序算法代码
  • Python实现堆排序的方法详解
  • python下实现二叉堆以及堆排序的示例
  • Python实现基于二叉树存储结构的堆排序算法示例
  • Python排序搜索基本算法之堆排序实例详解
  • Python实现的堆排序算法原理与用法实例分析
  • Python实现的堆排序算法示例
  • python冒泡排序算法的实现代码
  • python快速排序代码实例
  • python 实现插入排序算法
(0)

相关推荐

  • Python实现基于二叉树存储结构的堆排序算法示例

    本文实例讲述了Python实现基于二叉树存储结构的堆排序算法.分享给大家供大家参考,具体如下: 既然用Python实现了二叉树,当然要写点东西练练手. 网络上堆排序的教程很多,但是却几乎都是以数组存储的数,直接以下标访问元素,当然这样是完全没有问题的,实现简单,访问速度快,也容易理解. 但是以练手的角度来看,我还是写了一个二叉树存储结构的堆排序 其中最难的问题就是交换二叉树中两个节点. 因为一个节点最多与三个节点相连,那么两个节点互换,就需要考虑到5个节点之间的关系,也需要判断是左右孩子,这将是

  • python冒泡排序算法的实现代码

    1.算法描述:(1)共循环 n-1 次(2)每次循环中,如果 前面的数大于后面的数,就交换(3)设置一个标签,如果上次没有交换,就说明这个是已经好了的. 2.python冒泡排序代码 复制代码 代码如下: #!/usr/bin/python# -*- coding: utf-8 -*- def bubble(l):    flag = True    for i in range(len(l)-1, 0, -1):        if flag:             flag = False

  • Python实现堆排序的方法详解

    本文实例讲述了Python实现堆排序的方法.分享给大家供大家参考,具体如下: 堆排序作是基本排序方法的一种,类似于合并排序而不像插入排序,它的运行时间为O(nlogn),像插入排序而不像合并排序,它是一种原地排序算法,除了输入数组以外只占用常数个元素空间. 堆(定义):(二叉)堆数据结构是一个数组对象,可以视为一棵完全二叉树.如果根结点的值大于(小于)其它所有结点,并且它的左右子树也满足这样的性质,那么这个堆就是大(小)根堆. 我们假设某个堆由数组A表示,A[1]为树的根,给定某个结点的下标i,

  • python 实现插入排序算法

    复制代码 代码如下: #!/usr/bin/python def insert_sort(array): for i in range(1, len(array)): key = array[i] j = i - 1 while j >= 0 and key < array[j]: array[j + 1] = array[j] j-=1 array[j + 1] = key if __name__ == "__main__": array = [2, 4, 32, 64,

  • Python排序搜索基本算法之堆排序实例详解

    本文实例讲述了Python排序搜索基本算法之堆排序.分享给大家供大家参考,具体如下: 堆是一种完全二叉树,堆排序是一种树形选择排序,利用了大顶堆堆顶元素最大的特点,不断取出最大元素,并调整使剩下的元素还是大顶堆,依次取出最大元素就是排好序的列表.举例如下,把序列[26,5,77,1,61,11,59,15,48,19]排序,如下: 基于堆的优先队列算法代码如下: def fixUp(a): #在堆尾加入新元素,fixUp恢复堆的条件 k=len(a)-1 while k>1 and a[k//2

  • python下实现二叉堆以及堆排序的示例

    堆是一种特殊的树形结构, 堆中的数据存储满足一定的堆序.堆排序是一种选择排序, 其算法复杂度, 时间复杂度相对于其他的排序算法都有很大的优势. 堆分为大头堆和小头堆, 正如其名, 大头堆的第一个元素是最大的, 每个有子结点的父结点, 其数据值都比其子结点的值要大.小头堆则相反. 我大概讲解下建一个树形堆的算法过程: 找到N/2 位置的数组数据, 从这个位置开始, 找到该节点的左子结点的索引, 先比较这个结点的下的子结点, 找到最大的那个, 将最大的子结点的索引赋值给左子结点, 然后将最大的子结点

  • Python实现的堆排序算法示例

    本文实例讲述了Python实现的堆排序算法.分享给大家供大家参考,具体如下: 堆排序的思想: 堆是一种数据结构,可以将堆看作一棵完全二叉树,这棵二叉树满足,任何一个非叶节点的值都不大于(或不小于)其左右孩子节点的值. 将一个无序序列调整为一个堆,就可以找出这个序列的最大值(或最小值),然后将找出的这个值交换到序列的最后一个,这样有序序列就元素就增加一个,无序序列元素就减少一个,对新的无序序列重复这样的操作,就实现了排序. 堆排序的执行过程: 1.从无序序列所确定的完全二叉树的第一个非叶子节点开始

  • python快速排序代码实例

    一. 算法描述: 1.先从数列中取出一个数作为基准数.2.分区过程,将比这个数大的数全放到它的右边,小于或等于它的数全放到它的左边.3.再对左右区间重复第二步,直到各区间只有一个数.  二.python快速排序代码 复制代码 代码如下: #!/usr/bin/python# -*- coding: utf-8 -*- def sub_sort(array,low,high):    key = array[low]    while low < high:        while low <

  • Python实现的堆排序算法原理与用法实例分析

    本文实例讲述了Python实现的堆排序算法.分享给大家供大家参考,具体如下: 堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法.堆是一个近似完全二叉树的结构,并同时满足堆性质:即子结点的键值或索引总是小于(或者大于)它的父节点. 具体代码如下: #-*- coding: UTF-8 -*- import numpy as np def MakeHeap(a): for i in xrange(a.size / 2 - 1, -1, -1):#对非叶子节点的子节点进行调节,构建

  • python 实现堆排序算法代码

    复制代码 代码如下: #!/usr/bin/python import sys def left_child(node): return node * 2 + 1 def right_child(node): return node * 2 + 2 def parent(node): if (node % 2): return (i - 1) / 2 else: return (i - 2) / 2 def max_heapify(array, i, heap_size): l = left_c

随机推荐