Python爬虫实现全国失信被执行人名单查询功能示例

本文实例讲述了Python爬虫实现全国失信被执行人名单查询功能。分享给大家供大家参考,具体如下:

一、需求说明

利用百度的接口,实现一个全国失信被执行人名单查询功能。输入姓名,查询是否在全国失信被执行人名单中。

二、python实现

版本1:

# -*- coding:utf-8*-
import sys
reload(sys)
sys.setdefaultencoding('utf-8')
import time
import requests
time1=time.time()
import pandas as pd
import json
iname=[]
icard=[]
def person_executed(name):
  for i in range(0,30):
    try:
      url="https://sp0.baidu.com/8aQDcjqpAAV3otqbppnN2DJv/api.php?resource_id=6899" \
      "&query=%E5%A4%B1%E4%BF%A1%E8%A2%AB%E6%89%A7%E8%A1%8C%E4%BA%BA%E5%90%8D%E5%8D%95" \
      "&cardNum=&" \
      "iname="+str(name)+ \
      "&areaName=" \
      "&pn="+str(i*10)+ \
      "&rn=10" \
      "&ie=utf-8&oe=utf-8&format=json"
      html=requests.get(url).content
      html_json=json.loads(html)
      html_data=html_json['data']
      for each in html_data:
        k=each['result']
        for each in k:
          print each['iname'],each['cardNum']
          iname.append(each['iname'])
          icard.append(each['cardNum'])
    except:
      pass
if __name__ == '__main__':
  name="郭**"
  person_executed(name)
  print len(iname)
  #####################将数据组织成数据框###########################
  data=pd.DataFrame({"name":iname,"IDCard":icard})
  #################数据框去重####################################
  data1=data.drop_duplicates()
  print data1
  print len(data1)
  #########################写出数据到excel#########################################
  pd.DataFrame.to_excel(data1,"F:\\iname_icard_query.xlsx",header=True,encoding='gbk',index=False)
  time2=time.time()
  print u'ok,爬虫结束!'
  print u'总共耗时:'+str(time2-time1)+'s'

三、效果展示

"D:\Program Files\Python27\python.exe" D:/PycharmProjects/learn2017/全国失信被执行人查询.py
郭** 34122319790****5119
郭** 32032119881****2419
郭** 32032119881****2419
3
                IDCard name
0  34122319790****5119  郭**
1  32032119881****2419  郭**
2
ok,爬虫结束!
总共耗时:7.72000002861s
Process finished with exit code 0

版本2:

# -*- coding:utf-8*-
import sys
reload(sys)
sys.setdefaultencoding('utf-8')
import time
import requests
time1=time.time()
import pandas as pd
import json
iname=[]
icard=[]
courtName=[]
areaName=[]
caseCode=[]
duty=[]
performance=[]
disruptTypeName=[]
publishDate=[]
def person_executed(name):
  for i in range(0,30):
    try:
      url="https://sp0.baidu.com/8aQDcjqpAAV3otqbppnN2DJv/api.php?resource_id=6899" \
      "&query=%E5%A4%B1%E4%BF%A1%E8%A2%AB%E6%89%A7%E8%A1%8C%E4%BA%BA%E5%90%8D%E5%8D%95" \
      "&cardNum=&" \
      "iname="+str(name)+ \
      "&areaName=" \
      "&pn="+str(i*10)+ \
      "&rn=10" \
      "&ie=utf-8&oe=utf-8&format=json"
      html=requests.get(url).content
      html_json=json.loads(html)
      html_data=html_json['data']
      for each in html_data:
        k=each['result']
        for each in k:
          print each['iname'],each['cardNum'],each['courtName'],each['areaName'],each['caseCode'],each['duty'],each['performance'],each['disruptTypeName'],each['publishDate']
          iname.append(each['iname'])
          icard.append(each['cardNum'])
          courtName.append(each['courtName'])
          areaName.append(each['areaName'])
          caseCode.append(each['caseCode'])
          duty.append(each['duty'])
          performance.append(each['performance'])
          disruptTypeName.append(each['disruptTypeName'])
          publishDate.append(each['publishDate'])
    except:
      pass
if __name__ == '__main__':
  name="郭**"
  person_executed(name)
  print len(iname)
  #####################将数据组织成数据框###########################
  # data=pd.DataFrame({"name":iname,"IDCard":icard})
  detail_data=pd.DataFrame({"name":iname,"IDCard":icard,"courtName":courtName,"areaName":areaName,"caseCode":caseCode,"duty":duty,"performance":performance,\
               "disruptTypeName":disruptTypeName,"publishDate":publishDate})
  #################数据框去重####################################
  # data1=data.drop_duplicates()
  # print data1
  # print len(data1)
  detail_data1=detail_data.drop_duplicates()
  # print detail_data1
  # print len(detail_data1)
  #########################写出数据到excel#########################################
  pd.DataFrame.to_excel(detail_data1,"F:\\iname_icard_query.xlsx",header=True,encoding='gbk',index=False)
  time2=time.time()
  print u'ok,爬虫结束!'
  print u'总共耗时:'+str(time2-time1)+'s'

更多关于Python相关内容可查看本站专题:《Python Socket编程技巧总结》、《Python正则表达式用法总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总》

希望本文所述对大家Python程序设计有所帮助。

您可能感兴趣的文章:

  • Python实现爬取百度贴吧帖子所有楼层图片的爬虫示例
  • python爬虫_实现校园网自动重连脚本的教程
  • python爬虫 使用真实浏览器打开网页的两种方法总结
  • 一个简单的python爬虫程序 爬取豆瓣热度Top100以内的电影信息
  • python书籍信息爬虫实例
  • 零基础写python爬虫之爬虫编写全记录
  • Python爬虫框架Scrapy安装使用步骤
  • Python爬虫模拟登录带验证码网站
  • 零基础写python爬虫之使用urllib2组件抓取网页内容
  • 零基础写python爬虫之使用Scrapy框架编写爬虫
  • python模拟新浪微博登陆功能(新浪微博爬虫)
(0)

相关推荐

  • python爬虫_实现校园网自动重连脚本的教程

    一.背景 最近学校校园网不知道是什么情况,总出现掉线的情况.每次掉线都需要我手动打开web浏览器重新进行账号密码输入,重新进行登录.系统的问题我没办法解决,但是可以写一个简单的python脚本用于自动登录校园网.每次掉线后,再打开任意网页就是这个页面. 二.实现代码 #-*- coding:utf-8 -*- __author__ = 'pf' import time import requests class Login: #初始化 def __init__(self): #检测间隔时间,单位

  • Python实现爬取百度贴吧帖子所有楼层图片的爬虫示例

    本文实例讲述了Python实现爬取百度贴吧帖子所有楼层图片的爬虫.分享给大家供大家参考,具体如下: 下载百度贴吧帖子图片,好好看 python2.7版本: #coding=utf-8 import re import requests import urllib from bs4 import BeautifulSoup import time time1=time.time() def getHtml(url): page = requests.get(url) html =page.text

  • python书籍信息爬虫实例

    python书籍信息爬虫示例,供大家参考,具体内容如下 背景说明 需要收集一些书籍信息,以豆瓣书籍条目作为源,得到一些有效书籍信息,并保存到本地数据库. 获取书籍分类标签 具体可参考这个链接: https://book.douban.com/tag/?view=type 然后将这些分类标签链接存到本地某个文件,存储内容如下 https://book.douban.com/tag/小说 https://book.douban.com/tag/外国文学 https://book.douban.com

  • python模拟新浪微博登陆功能(新浪微博爬虫)

    1.主函数(WeiboMain.py): 复制代码 代码如下: import urllib2import cookielib import WeiboEncodeimport WeiboSearch if __name__ == '__main__':    weiboLogin = WeiboLogin('×××@gmail.com', '××××')#邮箱(账号).密码    if weiboLogin.Login() == True:        print "登陆成功!" 前

  • Python爬虫模拟登录带验证码网站

    爬取网站时经常会遇到需要登录的问题,这是就需要用到模拟登录的相关方法.python提供了强大的url库,想做到这个并不难.这里以登录学校教务系统为例,做一个简单的例子. 首先得明白cookie的作用,cookie是某些网站为了辨别用户身份.进行session跟踪而储存在用户本地终端上的数据.因此我们需要用Cookielib模块来保持网站的cookie. 这个是要登陆的地址 http://202.115.80.153/ 和验证码地址 http://202.115.80.153/CheckCode.

  • 一个简单的python爬虫程序 爬取豆瓣热度Top100以内的电影信息

    概述 这是一个简单的python爬虫程序,仅用作技术学习与交流,主要是通过一个简单的实际案例来对网络爬虫有个基础的认识. 什么是网络爬虫 简单的讲,网络爬虫就是模拟人访问web站点的行为来获取有价值的数据.专业的解释:百度百科 分析爬虫需求 确定目标 爬取豆瓣热度在Top100以内的电影的一些信息,包括电影的名称.豆瓣评分.导演.编剧.主演.类型.制片国家/地区.语言.上映日期.片长.IMDb链接等信息. 分析目标 1.借助工具分析目标网页 首先,我们打开豆瓣电影·热门电影,会发现页面总共20部

  • 零基础写python爬虫之使用urllib2组件抓取网页内容

    版本号:Python2.7.5,Python3改动较大,各位另寻教程. 所谓网页抓取,就是把URL地址中指定的网络资源从网络流中读取出来,保存到本地.  类似于使用程序模拟IE浏览器的功能,把URL作为HTTP请求的内容发送到服务器端, 然后读取服务器端的响应资源. 在Python中,我们使用urllib2这个组件来抓取网页. urllib2是Python的一个获取URLs(Uniform Resource Locators)的组件. 它以urlopen函数的形式提供了一个非常简单的接口. 最简

  • Python爬虫框架Scrapy安装使用步骤

    一.爬虫框架Scarpy简介Scrapy 是一个快速的高层次的屏幕抓取和网页爬虫框架,爬取网站,从网站页面得到结构化的数据,它有着广泛的用途,从数据挖掘到监测和自动测试,Scrapy完全用Python实现,完全开源,代码托管在Github上,可运行在Linux,Windows,Mac和BSD平台上,基于Twisted的异步网络库来处理网络通讯,用户只需要定制开发几个模块就可以轻松的实现一个爬虫,用来抓取网页内容以及各种图片. 二.Scrapy安装指南 我们的安装步骤假设你已经安装一下内容:<1>

  • python爬虫 使用真实浏览器打开网页的两种方法总结

    1.使用系统自带库 os 这种方法的优点是,任何浏览器都能够使用, 缺点不能自如的打开一个又一个的网页 import os os.system('"C:/Program Files/Internet Explorer/iexplore.exe" http://www.baidu.com') 2.使用python 集成的库 webbroswer python的webbrowser模块支持对浏览器进行一些操作,主要有以下三个方法: import webbrowser webbrowser.

  • 零基础写python爬虫之爬虫编写全记录

    先来说一下我们学校的网站: http://jwxt.sdu.edu.cn:7777/zhxt_bks/zhxt_bks.html 查询成绩需要登录,然后显示各学科成绩,但是只显示成绩而没有绩点,也就是加权平均分. 显然这样手动计算绩点是一件非常麻烦的事情.所以我们可以用python做一个爬虫来解决这个问题. 1.决战前夜 先来准备一下工具:HttpFox插件. 这是一款http协议分析插件,分析页面请求和响应的时间.内容.以及浏览器用到的COOKIE等. 以我为例,安装在火狐上即可,效果如图:

  • 零基础写python爬虫之使用Scrapy框架编写爬虫

    网络爬虫,是在网上进行数据抓取的程序,使用它能够抓取特定网页的HTML数据.虽然我们利用一些库开发一个爬虫程序,但是使用框架可以大大提高效率,缩短开发时间.Scrapy是一个使用Python编写的,轻量级的,简单轻巧,并且使用起来非常的方便.使用Scrapy可以很方便的完成网上数据的采集工作,它为我们完成了大量的工作,而不需要自己费大力气去开发. 首先先要回答一个问题. 问:把网站装进爬虫里,总共分几步? 答案很简单,四步: 新建项目 (Project):新建一个新的爬虫项目 明确目标(Item

随机推荐