Java基于虹软实现人脸识别、人脸比对、活性检测等

目录
  • 虹软
  • 一、注册虹软开发者平台
  • 二、开始使用SDK

虹软

  • 免费,高级版本试用
  • 支持在线、离线
  • 有 Java SDK,C++ SDK

一、注册虹软开发者平台

点击注册

注册完成后可在“我的应用”中新建应用,获得 APP_IDSDK_Key,请记住这两个信息,后续 SDK 中会用到。

接下来下载SDK就行了。

二、开始使用SDK

SDK包结构
在下载的sdk包中,包结构大概是这样

|—demo
| |—ArcFaceDemo Demo工程
|—doc
| |—ARCSOFT_ARC_FACE_DEVELOPER’S_GUIDE.PDF 开发说明文档
|—inc
| |—amcomdef.h 平台文件
| |—asvloffscreen.h 平台文件
| |—arcsoft_face_sdk.h 接口文件
| |—merror.h 错误码文件
|—lib
|—|---Win32/x64
| |—|---libarcsoft_face.dll 算法库
| |—|---libarcsoft_face_engine.dll 引擎库
| |—|---libarcsoft_face_engine.lib 引擎库
|—samplecode
| |—samplecode.cpp 示例代码
|—releasenotes.txt 说明文件

在项目中引入 SDK 包

<dependency>
    <groupId>arcsoft</groupId>
    <artifactId>arcsoft-sdk-face</artifactId>
    <version>3.0.0.0</version>
    <scope>system</scope>
    <systemPath>${project.basedir}/lib/arcsoft-sdk-face-3.0.0.0.jar</systemPath>
</dependency>

简单的集成

package com.study;

import com.arcsoft.face.*;
import com.arcsoft.face.enums.*;
import com.arcsoft.face.toolkit.ImageFactory;
import com.arcsoft.face.toolkit.ImageInfo;
import com.arcsoft.face.toolkit.ImageInfoEx;
import com.study.exception.CustomException;
import com.study.vo.FaceDetailInfo;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import java.io.File;
import java.net.URL;
import java.util.ArrayList;
import java.util.List;

/**
 * 集成虹软-人脸识别测试
 *
 * @author ouyangrongtao
 * @since 2022-02-20 19:12
 */
public class FaceEngineMain {

    // 从上述的开发者平台-“我的应用” 获取
    private static final String APP_ID = "";
    private static final String SDK_KEY = "";

    // sdk安装路径
    private static final String ARC_FACE_PATH = "arcsoft";

    private static final Logger LOGGER = LoggerFactory.getLogger(FaceEngineMain.class);

    public static void main(String[] args) {
        FaceEngineMain faceEngineMain = new FaceEngineMain();
        // 激活
        FaceEngine faceEngine = faceEngineMain.active();
        // 识别功能配置
        FunctionConfiguration functionConfiguration = faceEngineMain.getFunctionConfiguration();
        // 初始化识别引擎
        faceEngineMain.initEngine(faceEngine, functionConfiguration);

        ImageInfo imageInfo = ImageFactory.getRGBData(new File("d:\\aaa.jpeg"));
        ImageInfo imageInfo2 = ImageFactory.getRGBData(new File("d:\\bbb.jpeg"));

        // 人脸检测&特征提取1
        List<FaceDetailInfo> faceDetailInfoList1 = faceEngineMain.detectFaces(faceEngine, imageInfo);

        // 人脸检测&特征提取2
        List<FaceDetailInfo> faceDetailInfoList2 = faceEngineMain.detectFaces(faceEngine, imageInfo2);

        /*
         * 特征比对
         * 用于证件照或生活照与证件照之间的特征比对,推荐阈值0.82
         * 用于生活照之间的特征比对,推荐阈值0.80
         */
        FaceSimilar faceSimilar = faceEngineMain.compareFaceFeature(faceEngine,
                faceDetailInfoList1.get(0).getFaceFeature(), faceDetailInfoList2.get(0).getFaceFeature());
        LOGGER.info("相似度:{}", faceSimilar.getScore());

        // 获取人脸属性
        faceEngineMain.getFaceAttributes(faceEngine, imageInfo);

        ImageInfo imageInfo3 = ImageFactory.getRGBData(new File("d:\\ccc.jpg"));
        ImageInfo imageInfo4 = ImageFactory.getRGBData(new File("d:\\ddd.jpg"));

        // 人脸检测&特征提取3
        List<FaceDetailInfo> faceDetailInfoList3 = faceEngineMain.detectFacesEx(faceEngine, imageInfo3, DetectModel.ASF_DETECT_MODEL_RGB);

        // 人脸检测&特征提取4
        List<FaceDetailInfo> faceDetailInfoList4 = faceEngineMain.detectFacesEx(faceEngine, imageInfo4, DetectModel.ASF_DETECT_MODEL_RGB);

        // 特征比对
        FaceSimilar faceSimilar2 = faceEngineMain.compareFaceFeature(faceEngine,
                faceDetailInfoList3.get(0).getFaceFeature(), faceDetailInfoList4.get(0).getFaceFeature(), CompareModel.LIFE_PHOTO);
        /*
         * 特征比对
         * 用于证件照或生活照与证件照之间的特征比对,推荐阈值0.82
         * 用于生活照之间的特征比对,推荐阈值0.80
         */
        LOGGER.info("相似度:{}", faceSimilar2.getScore());

        // 获取人脸属性
        faceEngineMain.getFaceAttributesEx(faceEngine, imageInfo);

        ImageInfo imageInfoGray = ImageFactory.getGrayData(new File("d:\\ddd.jpg"));

        // 活体检测 RGB & IR
        faceEngineMain.getLiveness(faceEngine, imageInfo, imageInfoGray);

        // 卸载
        faceEngineMain.unInit(faceEngine);
    }

    /**
     * 活体检测
     * @param faceEngine 引擎
     * @param imageInfoRGB RGB图片信息
     * @param imageInfoGray Gray图片信息
     */
    private void getLiveness(FaceEngine faceEngine, ImageInfo imageInfoRGB, ImageInfo imageInfoGray) {
        // 人脸检测
        List<FaceInfo> faceInfoList = new ArrayList<>();
        faceEngine.detectFaces(imageInfoRGB.getImageData(),
                imageInfoRGB.getWidth(), imageInfoRGB.getHeight(), imageInfoRGB.getImageFormat(), faceInfoList);
        // 设置活体测试阀值
        faceEngine.setLivenessParam(0.5f, 0.7f);

        // RGB人脸检测
        FunctionConfiguration configuration = new FunctionConfiguration();
        configuration.setSupportLiveness(true);
        faceEngine.process(imageInfoRGB.getImageData(),
                imageInfoRGB.getWidth(), imageInfoRGB.getHeight(), imageInfoRGB.getImageFormat(), faceInfoList, configuration);

        // RGB活体检测
        List<LivenessInfo> livenessInfoList = new ArrayList<>();
        faceEngine.getLiveness(livenessInfoList);
        LOGGER.info("RGB活体:{}", livenessInfoList.get(0).getLiveness());

        // IR属性处理
        List<FaceInfo> faceInfoListGray = new ArrayList<>();
        // IR人脸检查
        faceEngine.detectFaces(imageInfoGray.getImageData(),
                imageInfoGray.getWidth(), imageInfoGray.getHeight(), imageInfoGray.getImageFormat(), faceInfoListGray);

        configuration = new FunctionConfiguration();
        configuration.setSupportIRLiveness(true);
        faceEngine.processIr(imageInfoGray.getImageData(),
                imageInfoGray.getWidth(), imageInfoGray.getHeight(), imageInfoGray.getImageFormat(), faceInfoListGray, configuration);

        //IR活体检测
        List<IrLivenessInfo> irLivenessInfo = new ArrayList<>();
        faceEngine.getLivenessIr(irLivenessInfo);
        LOGGER.info("IR活体:{}", irLivenessInfo.get(0).getLiveness());
    }

    /**
     * 人脸属性检测
     * @param faceEngine 引擎
     * @param imageInfo 图片信息
     */
    private void getFaceAttributesEx(FaceEngine faceEngine, ImageInfo imageInfo) {
        // 人脸检测
        List<FaceInfo> faceInfoList = new ArrayList<>();
        faceEngine.detectFaces(imageInfo.getImageData(),
                imageInfo.getWidth(), imageInfo.getHeight(), imageInfo.getImageFormat(), faceInfoList);

        ImageInfoEx imageInfoEx = new ImageInfoEx();
        imageInfoEx.setHeight(imageInfo.getHeight());
        imageInfoEx.setWidth(imageInfo.getWidth());
        imageInfoEx.setImageFormat(imageInfo.getImageFormat());
        imageInfoEx.setImageDataPlanes(new byte[][]{imageInfo.getImageData()});
        imageInfoEx.setImageStrides(new int[]{imageInfo.getWidth() * 3});

        //人脸属性检测
        FunctionConfiguration configuration = new FunctionConfiguration();
        configuration.setSupportGender(true);
        configuration.setSupportAge(true);
        configuration.setSupportFace3dAngle(true);
        faceEngine.process(imageInfoEx, faceInfoList, configuration);

        //性别检测
        List<GenderInfo> genderInfoList = new ArrayList<>();
        faceEngine.getGender(genderInfoList);
        LOGGER.info("性别:{}", genderInfoList.get(0).getGender());

        //年龄检测
        List<AgeInfo> ageInfoList = new ArrayList<>();
        faceEngine.getAge(ageInfoList);
        LOGGER.info("年龄:{}", ageInfoList.get(0).getAge());

        //3D信息检测
        List<Face3DAngle> face3DAngleList = new ArrayList<>();
        faceEngine.getFace3DAngle(face3DAngleList);
        Face3DAngle face3DAngle = face3DAngleList.get(0);
        LOGGER.info("3D角度:{}", face3DAngle.getPitch() + "," + face3DAngle.getRoll() + "," + face3DAngle.getYaw());
    }

    /**
     * 人脸属性检测
     * @param faceEngine 引擎
     * @param imageInfo 图片信息
     */
    private void getFaceAttributes(FaceEngine faceEngine, ImageInfo imageInfo) {
        //人脸属性检测
        FunctionConfiguration configuration = new FunctionConfiguration();
        configuration.setSupportGender(true);
        configuration.setSupportAge(true);
        configuration.setSupportFace3dAngle(true);

        // 人脸检测
        List<FaceInfo> faceInfoList = new ArrayList<>();
        faceEngine.detectFaces(imageInfo.getImageData(),
                imageInfo.getWidth(), imageInfo.getHeight(), imageInfo.getImageFormat(), faceInfoList);

        faceEngine.process(imageInfo.getImageData(),
                imageInfo.getWidth(), imageInfo.getHeight(), imageInfo.getImageFormat(), faceInfoList, configuration);

        //性别检测
        List<GenderInfo> genderInfoList = new ArrayList<>();
        faceEngine.getGender(genderInfoList);
        LOGGER.info("性别:{}", genderInfoList.get(0).getGender());

        //年龄检测
        List<AgeInfo> ageInfoList = new ArrayList<>();
        faceEngine.getAge(ageInfoList);
        LOGGER.info("年龄:{}", ageInfoList.get(0).getAge());

        //3D信息检测
        List<Face3DAngle> face3DAngleList = new ArrayList<>();
        faceEngine.getFace3DAngle(face3DAngleList);
        Face3DAngle face3DAngle = face3DAngleList.get(0);
        LOGGER.info("3D角度:{}", face3DAngle.getPitch() + "," + face3DAngle.getRoll() + "," + face3DAngle.getYaw());
    }

    /**
     * 特征比对-可设置比对模型
     * @param faceEngine 引擎
     * @param sourceFaceFeature 原特征值
     * @param targetFaceFeature 比对的特征值
     * @param compareModel 比对模型
     * @return 比对结果
     */
    private FaceSimilar compareFaceFeature(FaceEngine faceEngine, FaceFeature sourceFaceFeature, FaceFeature targetFaceFeature, CompareModel compareModel) {
        // 特征比对
        FaceSimilar faceSimilar = new FaceSimilar();
        int errorCode = faceEngine.compareFaceFeature(targetFaceFeature, sourceFaceFeature, compareModel, faceSimilar);
        if (ErrorInfo.MOK.getValue() != errorCode) {
            LOGGER.error("人脸特征比对失败");
        }

        return faceSimilar;
    }

    /**
     * 特征比对
     * @param faceEngine 引擎
     * @param sourceFaceFeature 原特征值
     * @param targetFaceFeature 比对的特征值
     * @return 比对结果
     */
    private FaceSimilar compareFaceFeature(FaceEngine faceEngine, FaceFeature sourceFaceFeature, FaceFeature targetFaceFeature) {
        // 特征比对
        FaceSimilar faceSimilar = new FaceSimilar();
        int errorCode = faceEngine.compareFaceFeature(targetFaceFeature, sourceFaceFeature, faceSimilar);
        if (ErrorInfo.MOK.getValue() != errorCode) {
            LOGGER.error("人脸特征比对失败");
        }

        return faceSimilar;
    }

    /**
     * 人脸检测&特征提取--可设置检测模式
     * @param faceEngine 引擎
     * @param imageInfo 图片信息
     * @param detectModel 检测模式
     * @return 人脸信息
     */
    private List<FaceDetailInfo> detectFacesEx(FaceEngine faceEngine, ImageInfo imageInfo, DetectModel detectModel) {
        ImageInfoEx imageInfoEx = new ImageInfoEx();
        imageInfoEx.setHeight(imageInfo.getHeight());
        imageInfoEx.setWidth(imageInfo.getWidth());
        imageInfoEx.setImageFormat(imageInfo.getImageFormat());
        imageInfoEx.setImageDataPlanes(new byte[][]{imageInfo.getImageData()});
        imageInfoEx.setImageStrides(new int[]{imageInfo.getWidth() * 3});

        List<FaceInfo> faceInfoList = new ArrayList<>();
        faceEngine.detectFaces(imageInfoEx, detectModel, faceInfoList);

        List<FaceDetailInfo> faceDetailInfoList = new ArrayList<>(faceInfoList.size());
        for (FaceInfo faceInfo : faceInfoList) {
            LOGGER.info("imageInfoEx 人脸检测结果: {}", faceInfo);
            FaceFeature faceFeature = new FaceFeature();
            faceEngine.extractFaceFeature(imageInfoEx, faceInfo, faceFeature);

            LOGGER.info("imageInfoEx 特征值大小:{}", faceFeature.getFeatureData().length);

            FaceDetailInfo faceDetailInfo = new FaceDetailInfo(faceInfo, faceFeature);
            faceDetailInfoList.add(faceDetailInfo);
        }

        return faceDetailInfoList;
    }

    /**
     * 人脸检测&特征提取
     * @param faceEngine 引擎
     * @param imageInfo 图片信息
     * @return 人脸信息
     */
    private List<FaceDetailInfo> detectFaces(FaceEngine faceEngine, ImageInfo imageInfo) {
        // 人脸检测
        List<FaceInfo> faceInfoList = new ArrayList<>();
        faceEngine.detectFaces(imageInfo.getImageData(),
                imageInfo.getWidth(), imageInfo.getHeight(), imageInfo.getImageFormat(), faceInfoList);

        List<FaceDetailInfo> faceDetailInfoList = new ArrayList<>(faceInfoList.size());
        // 特征提取
        for (FaceInfo faceInfo : faceInfoList) {
            LOGGER.info("人脸检测结果: {}", faceInfo);

            FaceFeature faceFeature = new FaceFeature();
            faceEngine.extractFaceFeature(imageInfo.getImageData(),
                    imageInfo.getWidth(), imageInfo.getHeight(), imageInfo.getImageFormat(), faceInfo, faceFeature);

            LOGGER.info("特征值大小:{}", faceFeature.getFeatureData().length);

            FaceDetailInfo faceDetailInfo = new FaceDetailInfo(faceInfo, faceFeature);
            faceDetailInfoList.add(faceDetailInfo);
        }

        return faceDetailInfoList;
    }

    /**
     * 初始化识别引擎
     * @param faceEngine 人脸识别引擎
     * @param functionConfiguration 功能配置
     */
    private void initEngine(FaceEngine faceEngine, FunctionConfiguration functionConfiguration) {
        // 引擎配置
        EngineConfiguration engineConfiguration = new EngineConfiguration();
        engineConfiguration.setDetectMode(DetectMode.ASF_DETECT_MODE_IMAGE);
        engineConfiguration.setDetectFaceOrientPriority(DetectOrient.ASF_OP_ALL_OUT);
        engineConfiguration.setDetectFaceMaxNum(10);
        engineConfiguration.setDetectFaceScaleVal(16);

        engineConfiguration.setFunctionConfiguration(functionConfiguration);

        // 初始化引擎
        int errorCode = faceEngine.init(engineConfiguration);
        if (errorCode != ErrorInfo.MOK.getValue()) {
            throw new CustomException("初始化引擎失败");
        }
    }

    /**
     * 识别功能配置
     */
    private FunctionConfiguration getFunctionConfiguration() {
        // 功能配置
        FunctionConfiguration functionConfiguration = new FunctionConfiguration();

        functionConfiguration.setSupportAge(true);
        functionConfiguration.setSupportFace3dAngle(true);
        functionConfiguration.setSupportFaceDetect(true);
        functionConfiguration.setSupportFaceRecognition(true);
        functionConfiguration.setSupportGender(true);
        functionConfiguration.setSupportLiveness(true);
        functionConfiguration.setSupportIRLiveness(true);

        return functionConfiguration;
    }

    /**
     * 激活 初次使用SDK时需要对SDK先进行激活,激活后无需重复调用;调用此接口时必须为联网状态,激活成功后即可离线使用;
     * @return FaceEngine 对象
     */
    private FaceEngine active() {
        URL resource = ClassLoader.getSystemResource(ARC_FACE_PATH);
        LOGGER.info("软件安装目录:{}", resource);

        FaceEngine faceEngine = new FaceEngine(resource.getPath());

        ActiveFileInfo activeFileInfo = new ActiveFileInfo();
        int errorCode = faceEngine.getActiveFileInfo(activeFileInfo);
        if (errorCode != ErrorInfo.MOK.getValue()
                && errorCode != ErrorInfo.MERR_ASF_ALREADY_ACTIVATED.getValue()) {
            LOGGER.info("获取激活文件信息失败");
        }

        // 首次激活
        errorCode = faceEngine.activeOnline(APP_ID, SDK_KEY);
        if (errorCode != ErrorInfo.MOK.getValue()
                && errorCode != ErrorInfo.MERR_ASF_ALREADY_ACTIVATED.getValue()) {
            throw new CustomException("引擎激活失败");
        }

        LOGGER.info("激活信息:{}", activeFileInfo);

        return faceEngine;
    }

    /**
     * 卸载引擎
     * @param faceEngine 人脸识别引擎
     */
    private void unInit(FaceEngine faceEngine) {
        faceEngine.unInit();
    }
}

性能信息(参考官方文档)

阀值设置推荐(参考官方文档)

  1. 活体取值范围为[0~1],推荐阈值如下,高于此阈值的即可判断为活体。
    - RGB 活体:0.5
    - IR 活体:0.7

  2. 人脸比对取值范围为[0~1],推荐阈值如下,高于此阈值的即可判断为同一人。
    - 用于生活照之间的特征比对,推荐阈值0.80
    - 用于证件照或生活照与证件照之间的特征比对,推荐阈值0.82

产品文档 https://ai.arcsoft.com.cn/manual/docs#/89

到此这篇关于Java基于虹软实现人脸识别、人脸比对、活性检测等的文章就介绍到这了,更多相关Java 人脸识别、人脸比对、活性检测内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Java OpenCV4.0.0实现实时人脸识别

    本文实例为大家分享了javaOpenCV-4.0.0 实时人脸识别,供大家参考,具体内容如下 package com.xu.opencv; import org.opencv.core.Core; import org.opencv.core.Mat; import org.opencv.core.MatOfRect; import org.opencv.core.Point; import org.opencv.core.Rect; import org.opencv.core.Scalar;

  • Java+opencv3.2.0实现人脸检测功能

    说到人脸检测,首先要了解Haar特征分类器.Haar特征分类器说白了就是一个个的xml文件,不同的xml里面描述人体各个部位的特征值,比如人脸.眼睛等等.OpenCV3.2.0中提供了如下特征文件: haarcascade_eye.xml haarcascade_eye_tree_eyeglasses.xml haarcascade_frontalcatface.xml haarcascade_frontalcatface_extended.xml haarcascade_frontalface

  • JavaCV调用百度AI实现人脸检测方法详解

    目录 本篇概览 注册百度账号 登录百度智能云 实名认证 创建应用 拿到API Key和Secret Key 编码 使用限制 本篇概览 在检测人脸数量.位置.性别.口罩等场景时,可以考虑使用百度开放平台提供的web接口,一个web请求就能完成检测得到结果,本篇记录了从申请到真实调用的完整过程,由以下步骤组成: 注册百度账号 按照您的实际情况,注册个人或者企业账号,这个不多说了 登录百度智能云 使用刚才注册号的账号登录,地址是:https://login.bce.baidu.com/ 实名认证 打开

  • JavaCV实现人脸检测功能

    本文实例为大家分享了JavaCV实现人脸检测功能的具体代码,供大家参考,具体内容如下 /* * Copyright (C) 2010,2011,2012 Samuel Audet * * FacePreview - A fusion of OpenCV's facedetect and Android's CameraPreview samples, * with JavaCV + JavaCPP as the glue in between. * * This file was based o

  • Java OpenCV实现人脸识别过程详解

    准备 : 下载openCV安装包 :  https://opencv.org/ 安装包安装之后支持多种语言环境,此处使用Java,在Eclipse中引入 openCV目录下的java/opencv-320.jar,同时配置openCV库路径. Eclipse配置openCV 代码实现 : package test; import org.opencv.core.Core; import org.opencv.core.Mat; import org.opencv.core.MatOfRect;

  • OpenCV Java实现人脸识别和裁剪功能

    本文实例为大家分享了OpenCV Java实现人脸识别和裁剪的具体代码,供大家参考,具体内容如下 安装及配置 1.首先安装OpenCV,地址 这里我下载的是Windows版的3.4.5 然后安装即可-- 2.Eclipse配置OpenCV Window->Preferences->Java->User Libraries New输入你的Libraries名 这里我的安装目录是D:\OpenCV,所以是: 然后引入dll,我是64位机子,所以是: Ok,下面创建Java项目做Java与Op

  • java腾讯AI人脸对比对接代码实例

    技术栈: Spring boot 2.x 腾讯 java版本1.8 注意事项: 本文内的"**.**"需要自己替换为自己的路径. 常量内的"**"需要自己定义自己内容. 业务中认证图片,上传至阿里云OSS上 话不多说,直接上代码 1.pom文件: <!-- apache httpclient组件 --> <dependency> <groupId>org.apache.httpcomponents</groupId>

  • Java+OpenCV实现人脸检测并自动拍照

    java+opencv实现人脸检测,调用笔记本摄像头实时抓拍,人脸会用红色边框标识出来,并且将抓拍的目录存放在src下,图片名称是时间戳. 环境配置:win7 64位,jdk1.8 CameraBasic.java package com.njupt.zhb.test; import java.awt.EventQueue; import javax.swing.ImageIcon; import javax.swing.JFrame; import javax.swing.JLabel; im

  • java+opencv实现人脸识别功能

    背景:最近需要用到人脸识别,但又不花钱使用现有的第三方人脸识别接口,为此使用opencv结合java进行人脸识别(ps:opencv是开源的,使用它来做人脸识别存在一定的误差,效果一般). 1.安装opencv 官网地址:https://opencv.org/ , 由于官网下载速度是真的慢 百度网盘: 链接: https://pan.baidu.com/s/1RpsP-I7v8pP2dkqALDw7FQ 提取码: pq7v 如果是官网下载,就无脑安装就行了,安装完毕后. 将图一的两个文件复制到图

  • OPENCV+JAVA实现人脸识别

    本文实例为大家分享了JAVA实现人脸识别的具体代码,供大家参考,具体内容如下 官方下载 安装文件 ,以win7为例,下载opencv-2.4.13.3-vc14.exe 安装后,在build目录下 D:\opencv\build\java,获取opencv-2413.jar,copy至项目目录 同时需要dll文件 与 各 识别xml文件,进行不同特征的识别(人脸,侧脸,眼睛等) dll目录:D:\opencv\build\java\x64\opencv_java2413.dll xml目录:D:

随机推荐