Python matplotlib可视化之绘制韦恩图

目录
  • 本文速览
  • 1、matplotlib_venn
    • (1)2组数据venn图
    • (2)3组数据venn图
  • 2、pyvenn
    • 2组数据venn
    • 3组数据venn
    • 4组数据venn
    • 5组数据venn
    • 6组数据venn

本文速览

2组数据venn

3组数据venn

4组数据venn

5组数据venn图

6组数据venn

python中Matplotlib并没有现成的函数可直接绘制venn图, 不过已经有前辈基于matplotlib.patches及matplotlib.path开发了两个轮子:

matplotlib_venn【2~3组数据,比较多博客介绍】:https://github.com/konstantint/matplotlib-venn

pyvenn【2~6组数据】:https://github.com/tctianchi/pyvenn

1、 matplotlib_venn

该模块包含'venn2', 'venn2_circles',  'venn3', 'venn3_circles'四个关键函数,这里主要详细介绍'venn2','venn3'同理。

(1)2组数据venn图

matplotlib_venn.venn2(subsets, set_labels=('A', 'B'), set_colors=('r', 'g'), alpha=0.4, normalize_to=1.0, ax=None, subset_label_formatter=None)

绘图数据格式

subsets参数接收绘图数据集,以下5种方式均可以,注意细微异同。

#导入依赖packages
import matplotlib.pyplot as plt
from matplotlib_venn import venn2,venn2_circles#记得安装matplotlib_venn(pip install matplotlib_venn 或者conda install matplotlib_venn)

# subsets参数
#绘图数据的格式,以下5种方式均可以,注意异同
subset = [[{1,2,3},{1,2,4}],#列表list(集合1,集合2)
          ({1,2,3},{1,2,4}),#元组tuple(集合1,集合2)
          {'10': 1, '01': 1, '11': 2},#字典dict(A独有,B独有,AB共有)
          (3, 3, 2),####元组tuple(A有,B有,AB共有),注意和其它几种方式的异同点
          [3,3,2]#列表list(A有,B有,AB共有)
         ]
for i in subset:
    my_dpi=100
    plt.figure(figsize=(500/my_dpi, 500/my_dpi), dpi=my_dpi)
    g=venn2(subsets=i)#默认数据绘制venn图,只需传入绘图数据
    plt.title('subsets=%s'%str(i))
    plt.show()

一些简单参数介绍 

my_dpi=150
plt.figure(figsize=(580/my_dpi, 580/my_dpi), dpi=my_dpi)#控制图尺寸的同时,使图高分辨率(高清)显示
g=venn2(subsets = [{1,2,3},{1,2,4}], #绘图数据集
        set_labels = ('Label 1', 'Label 2'), #设置组名
        set_colors=("#098154","#c72e29"),#设置圈的颜色,中间颜色不能修改
        alpha=0.6,#透明度
        normalize_to=1.0,#venn图占据figure的比例,1.0为占满
       )
plt.show()

所有圈外框属性设置 

my_dpi=150
plt.figure(figsize=(580/my_dpi, 580/my_dpi), dpi=my_dpi)
g=venn2(subsets = [{1,2,3},{1,2,4}],
        set_labels = ('Label 1', 'Label 2'),
        set_colors=("#098154","#c72e29"),
        alpha=0.6,
        normalize_to=1.0,
       )
g=venn2_circles(subsets = [{1,2,3},{1,2,4}],
        linestyle='--', linewidth=0.8, color="black"#外框线型、线宽、颜色
       )
plt.show()

单个圈特性设置

g.get_patch_by_id('10')返回一个matplotlib.patches.PathPatch对象,有诸多参数可个性化修改 ,详细见matplotlib官网。

my_dpi=150
plt.figure(figsize=(550/my_dpi, 550/my_dpi), dpi=my_dpi)

g=venn2(subsets = [{1,2,3},{1,2,4}],
        set_labels = ('Label 1', 'Label 2'),
        set_colors=("#098154","#c72e29"),
        alpha=0.6,
        normalize_to=1.0,
       )
g.get_patch_by_id('10').set_edgecolor('red')#左圈外框颜色
g.get_patch_by_id('10').set_linestyle('--')#左圈外框线型
g.get_patch_by_id('10').set_linewidth(2)#左圈外框线宽
g.get_patch_by_id('01').set_edgecolor('green')#右圈外框颜色
g.get_patch_by_id('11').set_edgecolor('blue')#中间圈外框颜色
plt.show()

单个圈文本设置

g.get_label_by_id('10') 返回一个matplotlib.text.Text对象,有诸多参数可个性化修改 ,详细见matplotlib官网。

my_dpi=150
plt.figure(figsize=(600/my_dpi, 600/my_dpi), dpi=my_dpi)
g=venn2(subsets = [{1,2,3},{1,2,4}],
        set_labels = ('Label 1', 'Label 2'),
        set_colors=("#098154","#c72e29"),
        alpha=0.6,
        normalize_to=1.0,
       )
g.get_label_by_id('10').set_fontfamily('Microsoft YaHei')#左圈中1的字体设置为微软雅黑
g.get_label_by_id('10').set_fontsize(20)#1的大小设置为20
g.get_label_by_id('10').set_color('r')#1的颜色
g.get_label_by_id('10').set_rotation(45)#1的倾斜度

添加额外注释 

my_dpi=150
plt.figure(figsize=(580/my_dpi, 580/my_dpi), dpi=my_dpi)#控制图尺寸的同时,使图高分辨率(高清)显示
g=venn2(subsets = [{1,2,3},{1,2,4}], #绘图数据集
        set_labels = ('Label 1', 'Label 2'), #设置组名
        set_colors=("#098154","#c72e29"),#设置圈的颜色,中间颜色不能修改
        alpha=0.6,#透明度
        normalize_to=1.0,#venn图占据figure的比例,1.0为占满
       )

plt.annotate('I like this green part!',
             color='#098154',
             xy=g.get_label_by_id('10').get_position() - np.array([0, 0.05]),
             xytext=(-80,40),
             ha='center', textcoords='offset points',
             bbox=dict(boxstyle='round,pad=0.5', fc='#098154', alpha=0.6),#注释文字底纹
             arrowprops=dict(arrowstyle='-|>', connectionstyle='arc3,rad=0.5',color='#098154')#箭头属性设置
            )

plt.annotate('She like this red part!',
             color='#c72e29',
             xy=g.get_label_by_id('01').get_position() + np.array([0, 0.05]),
             xytext=(80,40),
             ha='center', textcoords='offset points',
             bbox=dict(boxstyle='round,pad=0.5', fc='#c72e29', alpha=0.6),
             arrowprops=dict(arrowstyle='-|>', connectionstyle='arc3,rad=0.5',color='#c72e29')
            )

plt.annotate('We both dislike this strange part!',
             color='black',
             xy=g.get_label_by_id('11').get_position() + np.array([0, 0.05]),
             xytext=(20,80),
             ha='center', textcoords='offset points',
             bbox=dict(boxstyle='round,pad=0.5', fc='grey', alpha=0.6),
             arrowprops=dict(arrowstyle='-|>', connectionstyle='arc3,rad=-0.5',color='black')
            )

plt.show()

多子图绘制venn图 

fig,axs=plt.subplots(1,3, figsize=(10,8),dpi=150)
g=venn2(subsets = [{1,2,3},{1,2,4}],
        set_labels = ('Label 1', 'Label 2'),
        set_colors=("#098154","#c72e29"),
        alpha=0.6,
        normalize_to=1.0,
        ax=axs[0],#该参数指定
       )
g=venn2(subsets = [{1,2,3,4,5,6},{1,2,4,5,6,7,8}],
        set_labels = ('Label 3', 'Label 4'),
        set_colors=("#098154","#c72e29"),
        alpha=0.6,
        normalize_to=1.0,
        ax=axs[1],
       )
g=venn2(subsets = [{0,1,2,3},{1,2,4}],
        set_labels = ('Label 5', 'Label 6'),
        set_colors=("#098154","#c72e29"),
        alpha=0.6,
        normalize_to=1.0,
        ax=axs[2],
       )
plt.show()

(2)3组数据venn图

matplotlib_venn.venn3(subsets, set_labels=('A', 'B', 'C'), set_colors=('r', 'g', 'b'), alpha=0.4, normalize_to=1.0, ax=None, subset_label_formatter=None)

参数和venn2几乎一样,介绍几个重要参数

基本参数介绍

my_dpi=150
plt.figure(figsize=(600/my_dpi, 600/my_dpi), dpi=my_dpi)#控制图尺寸的同时,使图高分辨率(高清)显示
g=venn3(subsets = [{1,2,3},{1,2,4},{2,6,7}], #传入三组数据
        set_labels = ('Label 1', 'Label 2','Label 3'), #设置组名
        set_colors=("#01a2d9", "#31A354", "#c72e29"),#设置圈的颜色,中间颜色不能修改
        alpha=0.8,#透明度
        normalize_to=1.0,#venn图占据figure的比例,1.0为占满
       )
plt.show()

个性化设置图中7部分每一部分

(100, 010, 110, 001, 101, 011, 111)分别代替每一小块,那么代替的是那一小块了?

my_dpi=150
plt.figure(figsize=(600/my_dpi, 600/my_dpi), dpi=my_dpi)
g=venn3(subsets = [{1,2,3},{1,2,4},{2,6,7}],
        set_labels = ('Label 1', 'Label 2','Label 3'),
        set_colors=("#01a2d9", "#31A354", "#c72e29"),
        alpha=0.8,
        normalize_to=1.0,
       )

for i in list('100, 010, 110, 001, 101, 011, 111'.split(', ')):
    g.get_label_by_id('%s'%i).set_text('%s'%i)#修改每个组分的文本

#然后就可以如同venn2中那样个性化设置了
g.get_label_by_id('110').set_color('red')#1的颜色
g.get_patch_by_id('110').set_edgecolor('red')

plt.show()

2、pyvenn

同样,该库还是基于matplotlib.patches二次开发;

区别于上文,pyvenn支持2到6组数据;matplotlib_venn更加灵活多变。

pyvenn具有'venn2', 'venn3', 'venn4', 'venn5', 'venn6'五大主要函数,这里主要介绍venn2,其它同理。

2组数据venn

venn.draw_annotate、venn.draw_text、venn.venn2中的fill()参数非常助于个性化设置。

venn2(labels, names=['A', 'B'], **options)
import matplotlib.pyplot as plt

#添加pyvenn路径
import sys
sys.path.append(r'path\pyvenn-master')
import venn

mycolor=[[0.10588235294117647, 0.6196078431372549, 0.4666666666666667,0.6],
         [0.9058823529411765, 0.1607843137254902, 0.5411764705882353, 0.6]]

labels = venn.get_labels([[1,2,3,4,5,6],[1,2,4,5,6,7,8]], fill=['number',
                                                                'logic',#开启每个组分代码
                                                                'percent'#每个组分的百分比
                                                               ],
                        )
fig, ax = venn.venn2(labels,
                    names=list('AB'),
                    dpi=96,
                    colors=mycolor,#传入RPGA色号,直接传hex色号或者RGB会导致重叠部分被覆盖
                    fontsize=15,#控制组名及中间数字大小

                    )
plt.style.use('seaborn-whitegrid')
ax.set_axis_on()#开启坐标网格线
#ax.set_title('venn2')

# 提取plt.annotate部分参数
venn.draw_annotate(fig, ax, x=0.3, y=0.18, #箭头的位置
                   textx=0.1, texty=0.05, #箭尾的位置
                   text='Aoligei!', color='r', #注释文本属性
                   arrowcolor='r',#箭头的颜色等属性
                  )

#添加文本
venn.draw_text(fig, ax, x=0.25, y=0.2, text='number:logic(percent)',
               fontsize=12, ha='center', va='center')

3组数据venn

labels = venn.get_labels([range(10), range(5, 15), range(3, 8)], fill=['number',
                                                                       'logic',
                                                                       'percent'
                                                                      ]
                        )
fig, ax = venn.venn3(labels, names=list('ABC'),dpi=96)
fig.show()

4组数据venn

labels = venn.get_labels([range(10), range(5, 15), range(3, 8), range(8, 17)], fill=['number',
                                                                                     'logic',
                                                                                     'percent'
                                                                                    ])
fig, ax = venn.venn4(labels, names=list('ABCD'))
fig.show()

5组数据venn

labels = venn.get_labels([range(10), range(5, 15), range(3, 8), range(8, 17), range(10, 20)], fill=['number',
                                                                                                    'logic',
                                                                                                    'percent'
                                                                                                   ])
fig, ax = venn.venn5(labels, names=list('ABCDEF'))
fig.show()

6组数据venn

labels = venn.get_labels([range(10), range(5, 15), range(3, 8), range(8, 17), range(10, 20), range(13, 25)], fill=['number', 'logic','percent'])
fig, ax = venn.venn6(labels, names=list('ABCDEF'))
fig.show()

以上就是Python matplotlib可视化之绘制韦恩图的详细内容,更多关于Python matplotlib韦恩图的资料请关注我们其它相关文章!

(0)

相关推荐

  • python中如何利用matplotlib画多个并列的柱状图

    首先如果柱状图中有中文,比如X轴和Y轴标签需要写中文,解决中文无法识别和乱码的情况,加下面这行代码就可以解决了: plt.rcParams['font.sans-serif'] = ['SimHei'] # 解决中文乱码 以下总共展示了三种画不同需求的柱状图: 画多组两个并列的柱状图: import matplotlib import matplotlib.pyplot as plt import numpy as np plt.rcParams['font.sans-serif'] = ['S

  • python matplotlib各种画图

    目录 1.引入matpltlib库 2.pyplot基础图标函数总结 3.plot函数画图语法规则 4.折线图 4.散点图 5.直方图 6.条形图 纵向 横向 多条 7.饼图 1.引入matpltlib库 matplotlib是一种优秀的python数据可视化第三方库 使用matpltlib库画图时,先将它引入,加载里面的pyplot,并命名为plt,然后使用plot函数画图 import matplotlib.pyplot as plt #plt是引入模块的别名 2.pyplot基础图标函数总

  • Python Matplotlib绘制多子图详解

    通过获取子图的label和线型来合并图例 注意添加label #导入数据(读者可忽略) pre_lp=total_res#组合模型 true=diff1[-pre_day:]#真实值 pre_ph=results_data["yhat"]#prophet pre_lstm=reslut#lstm pre_ari=data_ari['data_pre']#arima #设置中文字体 rcParams['font.sans-serif'] = 'kaiti' # 生成一个时间序列 (读者可

  • Python使用Matplotlib绘制甘特图的实践

    目录 1.引言 2.举个栗子 3.数据预处理 4.绘制甘特图 5.添加颜色 6.添加透明度 7.再优化 8. 总结 1.引言 甘特图已经拥有 100 多年的历史,这种可视化图表对项目管理非常有用. Henry Gantt 为了分析已经完成的项目创建了甘特图,他最初设计这个可视化工具主要用来衡量员工的工作效率并从中识别表现不佳的员工.经过多年的发展,甘特图已经发展成项目规划和跟踪的必备工具. 本文主要介绍如何使用Matplotlib来绘制甘特图,并不断优化我们的可视化效果. 闲话少说,我们直接开始

  • Python matplotlib绘制灰度和彩色直方图

    目录 一.Matplotlib.Pyplot简介 1.Matplotlib 2.Pyplot 二.灰度直方图 1.主要函数 2.实现代码 3.效果示例 三.彩色直方图 1.实现代码 2.效果示例 一.Matplotlib.Pyplot简介 1.Matplotlib Matplotlib 是 Python 的绘图库,它能让使用者很轻松地将数据图形化,并且提供多样化的输出格式. Matplotlib 可以用来绘制各种静态,动态,交互式的图表. Matplotlib 是一个非常强大的 Python 画

  • Python+matplotlib实现绘制等高线图示例详解

    目录 前言 1. 等高线图概述 什么是等高线图? 等高线图常用场景 绘制等高线图步骤 案例展示 2. 等高线图属性 设置等高线颜色 设置等高线透明度 设置等高线颜色级别 设置等高线宽度 设置等高线样式 3. 显示轮廓标签 4. 填充颜色 5. 添加颜色条说明 总结 前言 我们在往期对matplotlib.pyplot()方法学习,到现在我们已经会绘制折线图.柱状图.散点等常规的图表啦(往期的内容如下,大家可以方便查看往期内容) Python matplotlib底层原理解析 Python利用 m

  • Python matplotlib如何绘制各种流线图

    目录 前言 流线图概述 什么是流线图? 流线图应用场景 获取流线图方法 流线图属性 设置流线图密度 设置流线宽度 设置流线颜色 设置流线缩放 设置流线颜色系 绘制流线图步骤 小试牛刀 总结 前言 在Python关于绘图,Mlab提供开源的matplotlib模块,不仅可以绘制折线图.柱状图.散点图等常规图外,还支持绘制量场图.频谱图.提琴图.箱型图等特殊图,例举往期文章可前往查看详情. 我们日常生活中经常会关注天气预报,在换季的时候,播报员会讲解气流流动情况.在天气预报过程中,气象专家们会根据流

  • Python调用Matplotlib绘制振动图、箱型图和提琴图

    目录 Matplotlib介绍 振动图 箱型图 提琴图 Matplotlib介绍 Matplotlib 是一款用于数据可视化的 Python 软件包,支持跨平台运行,它能够根据 NumPy  ndarray 数组来绘制 2D 图像,它使用简单.代码清晰易懂,深受广大技术爱好者喜爱. NumPy 是 Python 科学计算的软件包,ndarray 则是 NumPy 提供的一种数组结构. Matplotlib 由 John D. Hunter 在 2002 年开始编写, 2003 年 Matplot

  • Python matplotlib可视化之绘制韦恩图

    目录 本文速览 1.matplotlib_venn (1)2组数据venn图 (2)3组数据venn图 2.pyvenn 2组数据venn 3组数据venn 4组数据venn 5组数据venn 6组数据venn 本文速览 2组数据venn 3组数据venn 4组数据venn 5组数据venn图 6组数据venn python中Matplotlib并没有现成的函数可直接绘制venn图, 不过已经有前辈基于matplotlib.patches及matplotlib.path开发了两个轮子: matp

  • python数据可视化Seaborn绘制山脊图

    目录 1. 引言 2. 举个栗子 3.山脊图 4.扩展 5.结论 1. 引言 山脊图一般由垂直堆叠的折线图组成,这些折线图中的折线区域间彼此重叠,此外它们还共享相同的x轴. 山脊图经常以一种相对不常见且非常适合吸引大家注意力的紧凑图的形式表现.观察上图,我们给其起名叫Ridge plot是非常恰当的,因为上述图表看起来确实很像山的脊背.此外,上述图像还有另一个称呼叫做Joy Plots–这主要是因为Joy Division乐队在如下专辑封面上采用了这种可视化形式. 2. 举个栗子 在介绍完山脊图

  • Python数据可视化之简单折线图的绘制

    目录 创建RandomWalk类 选择方向 绘制随机漫步图 模拟多次随机漫步 给点着色 突出起点和终点 增加点数 调整尺寸以适用屏幕 创建RandomWalk类 为模拟随机漫步,我们将创建一个RandomWalk类,随机选择前进方向,这个类有三个属性,一个存储随机漫步的次数,另外两个存储随机漫步的每个点的x,y坐标,每次漫步都从点(0,0)出发 from random import choice class RandomWalk(): '''一个生成随机漫步数据的类''' def __init_

  • Python基于Matplotlib库简单绘制折线图的方法示例

    本文实例讲述了Python基于Matplotlib库简单绘制折线图的方法.分享给大家供大家参考,具体如下: Matplotlib画折线图,有一些离散点,想看看这些点的变动趋势: import matplotlib.pyplot as plt x1 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] y1=[30,31,31,32,33,35,35,40,47,62,99,186,480] x2 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1

  • 利用Python的folium包绘制城市道路图的实现示例

    写在前面 很长一段时间内,我都在研究在线地图的开发者文档,百度地图和高德地图的开发者中心提供了丰富的在线地图服务,虽然有一定的权限限制,但不得不说,还是给我的科研工作提供了特别方便的工具,在博客前面我先放上这两个在线地图开放平台的web API的地址链接: 百度地图开放平台 高德地图开放平台 基于这两个平台,博主进行了一系列的开发研究工作,本文介绍其中一项技术,如何用folium包绘制城市道路图,当然,也可绘制非城市道路图,只要提供正确的路名就行了. 开发工具: Python3.7 Spyder

  • 基于Python matplotlib库绘制箱线图

    目录 1. 关于箱线图 及 plt.boxplot()方法 2. 绘制一幅简单的箱线图 3. 绘制一幅更精致的图像 4. 异常值的标准 5. 异常值的输出 1. 关于箱线图 及 plt.boxplot()方法 箱线图又称箱形图,有的地方也可以叫盒须图.使用箱线图的好处是可以以一种相对稳定的方式描述数据离散分布情况,识别数据中的异常值. 在pthon的matplotlib库中绘制箱线图使用的是plt.boxplot()方法. 该方法的主要参数如下 参数 描述 x 要绘制箱线图的数据 notch 是

  • python+matplotlib实现动态绘制图片实例代码(交互式绘图)

    本文研究的主要是python+matplotlib实现动态绘制图片(交互式绘图)的相关内容,具体介绍和实现代码如下所示. 最近在研究动态障碍物避障算法,在Python语言进行算法仿真时需要实时显示障碍物和运动物的当前位置和轨迹,利用Anaconda的Python打包集合,在Spyder中使用Python3.5语言和matplotlib实现路径的动态显示和交互式绘图(和Matlab功能类似). Anaconda是一个用于科学计算的Python发行版,支持 Linux, Mac, Windows系统

  • Python数据可视化之绘制柱状图和条形图

    一.实验目的: 1.掌握Python中柱状图.条形图绘图函数的使用 2.利用上述绘图函数实现数据可视化 二.实验内容: 1.练习python中柱状图.条形图绘图函数的用法,掌握相关参数的概念 2.根据步骤一绘图函数要求,处理实验数据 3.根据步骤二得到的实验数据,绘制柱状图.条形图 4.练习如何通过调整参数使图片呈现不同效果,例如颜色.图例位置.背景网格.坐标轴刻度和标记等 三.实验过程(附结果截图): 1. 练习python中柱状图.条形图绘图函数的用法,掌握相关参数的概念 (1)练习绘制条形

  • R语言学习VennDiagram包绘制韦恩图示例

    目录 引言 一 需要安装和导入的包 二 使用函数及参数 三 知道各个数据集的个数以及重叠(交叉)的个数 2.1 两个已知数据集的韦恩图 2.2 三个已知数据集的韦恩图 四 根据数据集合绘制韦恩图 4.1 四个数据集合 4.2 五个数据集合 引言 本版块会持续分享一些常用的结果展示的图形. 在得到数据之后,我们经常会用到维恩图来展示各个数据集之间的重叠关系.本文简单的介绍R语言中的VennDiagram包绘制数据集的维恩图. 一 需要安装和导入的包 install.packages("VennDi

  • Python matplotlib.pyplot.hist()绘制直方图的方法实例

    目录 一.matplotlib.pyplot.hist()语法 二.绘制直方图 ①绘制简单直方图 ②:各个参数绘制的直方图 (1)histtype参数(设置样式bar.barstacked.step.stepfilled) (2)range参数(指定直方图数据的上下界,默认包含绘图数据的最大值和最小值(范围)) (3)orientation参数 (设置直方图的摆放位置,vertical垂直方向 horizontal水平方向,默认值:vertical垂直方向) (4)density参数(bool值

随机推荐