浅谈Golang Slice切片如何扩容的实现

目录
  • 一、Slice数据结构是什么?
  • 二、详细代码
    • 1.数据结构
    • 2.扩容原则
    • 3.如何理解扩容规则一
      • 1.当小于1024个元素时
      • 2.当大于1024个元素时
    • 4.如何理解扩容规则二
      • 1.简单理解内存地址更换
  • 总结

一、Slice数据结构是什么?

切片(slice)是 Golang 中一种比较特殊的数据结构,这种数据结构更便于使用和管理数据集合。切片是围绕动态数组的概念构建的,可以按需自动增长和缩小。切片(slice)是可以看做是一个长度可变的数组。
切片(slice)自身并不是动态数组或者数组指针。它内部实现的数据结构通过指针引用底层数组,设定相关属性将数据读写操作限定在指定的区域内。
切片(slice)是对数组一个连续片段的引用,所以切片是一个引用类型。

二、详细代码

1.数据结构

slice的结构体由3部分构成,Pointer 是指向一个数组的指针,len 代表当前切片的长度,cap 是当前切片的容量。cap 总是大于等于 len 的。
通常我们在对 slice 进行 append 等操作时,可能会造成slice的自动扩容。

代码如下(示例):

type slice struct {
	array unsafe.Pointer
	len int
	cap int
}

2.扩容原则

  • 如果切片的容量小于1024个元素,那么扩容的时候slice的cap就乘以2;一旦元素个数超过1024个元素,增长因子就变成1.25,即每次增加原来容量的四分之一。
  • 如果扩容之后,还没有触及原数组的容量,那么,切片中的指针指向的位置,就还是原数组,如果扩容之后,超过了原数组的容量,那么,Go就会开辟一块新的内存,把原来的值拷贝过来,这种情况丝毫不会影响到原数组。

3.如何理解扩容规则一

规则一:

如果切片的容量小于1024个元素,那么扩容的时候slice的cap就乘以2;一旦元素个数超过1024个元素,增长因子就变成1.25,即每次增加原来容量的四分之一。

1.当小于1024个元素时

代码如下(示例):

func main() {
	// 建立容量为 2 的 切片
	addCap := make([]string, 0, 2)
	// 插入一个数,占一个容量
	addCap = append(addCap, "1")
	// 打印此时的地址
	fmt.Println("addCap 1", addCap, cap(addCap), &addCap[0])
	// 插入一个数,占一个容量
	// 再打印此时的地址
	addCap = append(addCap, "1")
	fmt.Println("addCap 2", addCap, cap(addCap), &addCap[0])
	// 插入一个数,占一个容量
	// 再打印此时的地址
	addCap = append(addCap, "1")
	// 此时三个数已经超出容量,那么切片容量将扩容,此时地址也将变成新的地址
	fmt.Println("addCap 3", addCap, cap(addCap), &addCap[0])

}

结果(示例):

2.当大于1024个元素时

代码如下(示例):

func main() {
	// 建立容量为 1022 的 切片
	addCap1024 := make([]int, 1022, 1024)
	// 插入一个数,占一个容量 容量 1023
	addCap1024 = append(addCap1024, 1)
	// 打印此时的地址
	fmt.Println("addCap1024 1", cap(addCap1024), &addCap1024[0])
	// 插入一个数,占一个容量
	// 再打印此时的地址
	addCap1024 = append(addCap1024, 1)
	fmt.Println("addCap1024 2", cap(addCap1024), &addCap1024[0])
	// 插入一个数,占一个容量
	// 再打印此时的地址
	addCap1024 = append(addCap1024, 1)
	// 此时三个数已经超出容量1024,那么切片容量将扩容,此时地址也将变成新的地址
	fmt.Println("addCap1024 3", cap(addCap1024), &addCap1024[0])

}

结果(示例):

此时容量Cap 增加了 1280 - 1024 = 256 ,也就是 1024 的 25 %
即 增长因子就变成1.25,即每次增加原来容量的四分之一。

4.如何理解扩容规则二

规则一:

如果扩容之后,还没有触及原数组的容量,那么,切片中的指针指向的位置,就还是原数组,如果扩容之后,超过了原数组的容量,那么,Go就会开辟一块新的内存,把原来的值拷贝过来,这种情况丝毫不会影响到原数组。

1.简单理解内存地址更换

代码如下(示例):

func main() {
	// 建立容量为 2 的 切片
	addCap := make([]string, 0, 2)
	// 插入一个数,占一个容量
	addCap = append(addCap, "1")
	// 打印此时的地址
	fmt.Println("addCap 1", addCap, cap(addCap), &addCap[0])
	// 插入一个数,占一个容量
	// 再打印此时的地址
	addCap = append(addCap, "1")
	fmt.Println("addCap 2", addCap, cap(addCap), &addCap[0])
	// 将 oth 的指针指向切片地址
	// 再打印此时的地址 和 addCap 一样,即未触及容量时,还是原数组
	oth := addCap[0:1]
	fmt.Println("oth 1",oth,cap(oth),&oth[0])

	//此时修改原数组 oth 所指向的地址不变,但第一个数的值已经更改 3
	addCap[0] = "3"
	fmt.Println("oth 2",oth,cap(oth),&oth[0])

	// 插入一个数,占一个容量
	// 再打印此时的地址
	addCap = append(addCap, "1")
	//此时再修改 已经是扩容后的新地址 原数组将保持不变 即oth 所指向的地址的值不变
	addCap[0] = "4"
	// 此时三个数已经超出容量,那么切片容量将扩容,此时地址也将变成新的地址,第一个数也将修改为 4
	fmt.Println("addCap 3", addCap, cap(addCap), &addCap[0])
	// 但 oth 依然保留着原数组的指针地址,所以依然还是 3
	fmt.Println("oth 3",oth,cap(oth),&oth[0])

}

结果(示例):

此时容量Oth 指向原切片位置,而扩容后的新的切片指向了新的位置,做的修改将无法影响原切片。

总结

通过以上两个例子可以轻松了解在Golang中切片扩容的主要形式。而因为切片的底层也是是在连续的内存块中分配的,所以切片还能获得索引、迭代以及为垃圾回收优化的好处,非常适合我们深入学习。

到此这篇关于浅谈Golang Slice切片如何扩容的实现的文章就介绍到这了,更多相关Golang Slice切片扩容内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 浅谈Golang 切片(slice)扩容机制的原理

    我们知道 Golang 切片(slice) 在容量不足的情况下会进行扩容,扩容的原理是怎样的呢?是不是每次扩一倍?下面我们结合源码来告诉你答案. 一.源码 Version : go1.15.6  src/runtime/slice.go //go1.15.6 源码 src/runtime/slice.go func growslice(et *_type, old slice, cap int) slice { //省略部分判断代码 //计算扩容部分 //其中,cap : 所需容量,newcap

  • 浅谈Golang Slice切片如何扩容的实现

    目录 一.Slice数据结构是什么? 二.详细代码 1.数据结构 2.扩容原则 3.如何理解扩容规则一 1.当小于1024个元素时 2.当大于1024个元素时 4.如何理解扩容规则二 1.简单理解内存地址更换 总结 一.Slice数据结构是什么? 切片(slice)是 Golang 中一种比较特殊的数据结构,这种数据结构更便于使用和管理数据集合.切片是围绕动态数组的概念构建的,可以按需自动增长和缩小.切片(slice)是可以看做是一个长度可变的数组.切片(slice)自身并不是动态数组或者数组指

  • 浅谈golang slice 切片原理

    slice介绍 数组的长度在定义之后无法再次修改:数组是值类型,每次传递都将产生一份副本.显然这种数据结构无法完全满足开发者的真实需求.在初始定义数组时,我们并不知道需要多大的数组,因此我们就需要"动态数组".在Go里面这种数据结构叫slice,slice并不是真正意义上的动态数组,而是一个引用类型.slice总是指向一个底层array,slice的声明也可以像array一样,只是不需要长度,它是可变长的,可以随时往slice里面加数据. 初看起来,数组切片就像一个指向数组的指针,实际

  • 浅谈Golang是如何读取文件内容的(7种)

    本文旨在快速介绍Go标准库中读取文件的许多选项. 在Go中(就此而言,大多数底层语言和某些动态语言(如Node))返回字节流. 不将所有内容自动转换为字符串的好处是,其中之一是避免昂贵的字符串分配,这会增加GC压力. 为了使本文更加简单,我将使用string(arrayOfBytes)将bytes数组转换为字符串. 但是,在发布生产代码时,不应将其作为一般建议. 1.读取整个文件到内存中 首先,标准库提供了多种功能和实用程序来读取文件数据.我们将从os软件包中提供的基本情况开始.这意味着两个先决

  • 浅谈Golang的new与make区别是什么

    目录 new make 小结: 区别:在go语言中,make和new都是内存的分配(堆上),但是make只用于slice.map以及channel的初始化(非零值):而new用于类型的内存分配,并且内存置为零.make返回的是引用类型本身:而new返回的是指向类型的指针. 本文操作环境:windows10系统.GO 1.11.2.thinkpad t480电脑. Go语言中new和make都是用来内存分配的原语(allocation primitives).简单的说,new只分配内存,make用

  • Golang slice切片操作之切片的追加、删除、插入等

    本文介绍了Golang slice切片操作之切片的追加.删除.插入等,分享给大家,具体如下: 一.一般操作 1,声明变量,go自动初始化为nil,长度:0,地址:0,nil func main(){ var ss []string; fmt.Printf("length:%v \taddr:%p \tisnil:%v",len(ss),ss, ss==nil) } --- Running... length:0 addr:0x0 isnil:true Success: process

  • 浅谈golang 的高效编码细节

    目录 struct 和 map 用谁呢? 字符串如何拼接是好? 用 + 的方式 使用 fmt.Sprintf() 的方式 使用 strings.Join 的方式 使用 buffer 的方式 xdm,我们都知道 golang 是天生的高并发,高效的编译型语言 可我们也都可知道,工具再好,用法不对,全都白费,我们来举 2 个常用路径来感受一下 struct 和 map 用谁呢? 计算量很小的时候,可能看不出使用 临时 struct 和 map 的耗时差距,但是数量起来了,差距就明显了,且会随着数量越

  • 浅谈golang fasthttp踩坑经验

    一个简单的系统,结构如下: 我们的服务A接受外部的http请求,然后通过golang的fasthttp将请求转发给服务B,流程非常简单.线上运行一段时间之后,发现服务B完全不再接收任何请求,查看服务A的日志,发现大量的如下错误 从错误原因看是因为连接被占满导致的.进入服务A的容器中(服务A和服务B都是通过docker启动的),通过netstat -anlp查看,发现有大量的tpc连接,处于ESTABLISH.我们采用的是长连接的方式,此时心里非常疑惑:1. fasthttp是能够复用连接的,为什

  • 浅谈Golang内存逃逸

    目录 1.什么是内存逃逸 2.什么是逃逸分析 3.小结 4.逃逸分析案例 1.函数返回局部指针变量 2.interface类型逃逸 1.interface产生逃逸 2.指向栈对象的指针不能在堆中 3.闭包产生逃逸 4. 变量大小不确定及栈空间不足引发逃逸 5.总结 1.什么是内存逃逸 在一段程序中,每一个函数都会有自己的内存区域分配自己的局部变量,返回值,这些内存会由编译器在栈中进行分配,每一个函数会分配一个栈帧,在函数运行结束后销毁,但是有些变量我们想在函数运行结束后仍然使用,就需要把这个变量

  • 浅谈Golang数据竞态

    目录 一个数据竞态的case 检查数据竞态 解决方案 1.WaitGroup等待 2.Channel阻塞等待 3.Channel通道 4.互斥锁 典型数据竞态 1.循环计数上的竞态 2.意外共享变量 3.无保护的全局变量 4.原始无保护变量 5.未同步的发送和关闭操作 本文以一个简单事例的多种解决方案作为引子,用结构体Demo来总结各种并发读写的情况 一个数据竞态的case package main import ( "fmt" "testing" "ti

随机推荐