Python如何生成随机高斯模糊图片详解

高斯模糊的介绍与原理

通常,图像处理软件会提供"模糊"(blur)滤镜,使图片产生模糊的效果。

"模糊"的算法有很多种,其中有一种叫做"高斯模糊"(Gaussian Blur)。它将正态分布(又名"高斯分布")用于图像处理。

所谓"模糊",可以理解成每一个像素都取周边像素的平均值。

上图中,2是中间点,周边点都是1。

"中间点"取"周围点"的平均值,就会变成1。在数值上,这是一种"平滑化"。在图形上,就相当于产生"模糊"效果,"中间点"失去细节。

显然,计算平均值时,取值范围越大,"模糊效果"越强烈。

上面分别是原图、模糊半径3像素、模糊半径10像素的效果。模糊半径越大,图像就越模糊。从数值角度看,就是数值越平滑。

接下来的问题就是,既然每个点都要取周边像素的平均值,那么应该如何分配权重呢?

如果使用简单平均,显然不是很合理,因为图像都是连续的,越靠近的点关系越密切,越远离的点关系越疏远。因此,加权平均更合理,距离越近的点权重越大,距离越远的点权重越小。

python生成高斯模糊

Python可以使用opencv库很方便地生成模糊图像,如果没有安装opencv的,可以用pip安装:

pip install python-opencv

想了解高斯模糊是什么的话,可以看wiki百科-高斯模糊。对于一般人,只要知道这个操作可以生成模糊图片就好了,一行代码即可搞定:

import cv2
img = cv2.GaussianBlur(ori_img, (9, 9), 0)

这个函数的第一个参数是原图像,第二个参数是高斯矩阵,要注意长和宽都必须为单数,第三个参数是标准差,如果写0,则函数会自行计算。

那怎么控制模糊程度呢?很简单,高斯矩阵的尺寸越大,标准差越大,处理过的图像模糊程度越大。

介绍完了简单的高斯模糊操作,我们加一个随机处理,来随机生成模糊程度不同的几张图像,其实也很简单,加一个随机函数来生成高斯矩阵的尺寸就可以了:

import cv2
import random

imgName = "img.png"
min_size = 11

ori_img = cv2.imread(imgName)

for i in range(3):
    addition = random.choice((0, 2, 4, 6, 8, 10, 12))
    size = min_size + addition
    kernel_size = (size, size)
    img = cv2.GaussianBlur(ori_img, kernel_size, 0)
    new_imgName = "New_" + str(i) + "_" + str(kernel_size[0])  + "_" + imgName
    cv2.imwrite(new_imgName, img)

这里利用了random库,来在一组数字中随机选择一个数,加到最小尺寸上,作为每次生成的模糊图片的高斯矩阵尺寸,这里我的尺寸最小值设为了11,大家可以根据需要自己尝试看效果来设定。

总结

到此这篇关于Python如何生成随机高斯模糊图片的文章就介绍到这了,更多相关python生成高斯模糊内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 用python自动生成日历

    效果 在Excel日历模板的基础上,生成带有农历日期.节假日.休班等信息的日历,解决DIY日历最大的技术难题. 图中日期,第一行为公历,第二行为节假日,第三行为农历,第四行是其他特别的日子,比如生日.纪念日等. 特点 使用门槛低 Python + Excel,会运行Python脚本,会使用Excel即可上手. 步骤简单 只需要修改Excel的年份(在一月份表头修改),运行一次脚本 可扩展 可制作任意年份的日历(修改年份即可) 可定制 可以添加其他特殊日期 使用手册 第一步,修改日历年份及样式 打

  • python使用ProjectQ生成量子算法指令集

    输出算法操作 首先介绍一个最基本的使用方法,就是使用ProjectQ来打印量子算法中所输入的量子门操作,这里使用到了ProjectQ中的DummyEngine后端用于保存操作的指令.比如最简单的一个Bell State的制备,可以通过如下代码实现,并且打印出所保存的基本操作: from projectq import MainEngine from projectq.cengines import DummyEngine from projectq.ops import H, CX, All,

  • python基于opencv批量生成验证码的示例

    基本思路是使用opencv来把随机生成的字符,和随机生成的线段,放到一个随机生成的图像中去. 虽然没有加复杂的形态学处理,但是目前看起来效果还不错 尝试生成1000张图片,但是最后只有998张,因为有有重复的,被覆盖掉了. 代码如下: import cv2 import numpy as np line_num = 10 pic_num = 1000 path = "./imgs/" def randcolor(): return (np.random.randint(0,255),n

  • python基础学习之生成器与文件系统知识总结

    一.生成器 首先解释迭代器. 能以一种一致的方式对序列进行迭代(比如列表中的对象或文件中的行)是Python的一个重要特点.这是通过一种叫做迭代器协议(iterator protocol,它是一种使对象可迭代的通用方式)的方式实 现的,一个原生的使对象可迭代的方法. some_dict = {'a': 1, 'b': 2, 'c': 3} for key in some_dict: print(key) #输出: a c b 迭代器是一种特殊对象,它可以在诸如for循环之类的上下文中向Pytho

  • python生成器generator:深度学习读取batch图片的操作

    在深度学习中训练模型的过程中读取图片数据,如果将图片数据全部读入内存是不现实的,所以有必要使用生成器来读取数据. 通过列表生成式,我们可以直接创建一个列表.但是,受到内存限制,列表容量肯定是有限的.而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了. 所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间.在Python

  • Python趣味挑战之给幼儿园弟弟生成1000道算术题

    一.前言 阿姨花了30元给幼儿园的小弟弟买了一本习题,里面都是简单的二元加减法.我一听,惊道:"怎么还花钱买题?我动动手指能给你生成一千条." 阿姨觉得二元加减太简单了,想要三元加减法的算术题(x + y + z; x + y - z; x - y - z; x - y + z),因为弟弟还小,只会100以内的加减法,不会负数,所以出的算术题不仅计算结果要在[0, 100]内,算式中的任何两位的计算也要在[0, 100]内. 希望弟弟长大后会感谢我,嘻嘻~ 二.思路 生成在[1,99]

  • 教你使用Python根据模板批量生成docx文档

    一.需求说明 能够根据模板批量生成docx文档.具体而言,读取excel中的数据,然后使用python批量生成docx文档. 二.实验准备 准备excel数据: 这里是关于学生语数英成绩的统计表,文件名为score.xls 准备模板: 这是给学生家长的成绩通知书,文件名为template.doc 另外,在使用python进行实验之前,需要先安装第三方库docxtpl和xlrd,直接pip install就行: pip install docxtpl pip install xlrd 然后将xls

  • Python实现K-means聚类算法并可视化生成动图步骤详解

    K-means算法介绍 简单来说,K-means算法是一种无监督算法,不需要事先对数据集打上标签,即ground-truth,也可以对数据集进行分类,并且可以指定类别数目 牧师-村民模型 K-means 有一个著名的解释:牧师-村民模型: 有四个牧师去郊区布道,一开始牧师们随意选了几个布道点,并且把这几个布道点的情况公告给了郊区所有的村民,于是每个村民到离自己家最近的布道点去听课. 听课之后,大家觉得距离太远了,于是每个牧师统计了一下自己的课上所有的村民的地址,搬到了所有地址的中心地带,并且在海

  • 使用python批量生成insert语句的方法

    1.建表语句 2.目标insert语句 INSERT INTO `bidprcu_dic_a`( `DIC_ID`, `DIC_TYPE_CODE`, `DIC_TYPE_NAME`, `DATA_DIC_CODE`, `DATA_DIC_NAME`, `PRNT_CODE`, `SRT`, `MEMO`, `DATA_SOUC`, `RID`, `CRTER_ID`, `CRTER_NAME`, `CRTE_OPTINS_NO`, `CRTE_TIME`, `OPT_TIME`, `OPTER

  • 教你怎么用Python生成九宫格照片

    一.朋友圈九宫格效果图 二.图片基本操作 打开要处理的图片 判断打开的图片是否为正方形 如果是正方形,就进行九等分,如果不是正方形,先用白色填充为正方形,再进行九等分 保存处理完的图片 第一步,先我安装一下Pillow模块 pip install pillow 1 .处理图片 在Pillow中,用Image子模块.Image.open函数会返回一个图片对象,代码如下: from PIL import Image # 读取图片 img = Image.open('lbxx.jpg') Pillow

随机推荐