python 实现从高分辨图像上抠取图像块

我就废话不多说了,直接上代码吧!

#coding=utf-8
import cv2
import numpy as np
import os
# 程序实现功能:
# 根据patch在高分辨率图像上的索引值,crop出对应区域的图像
# 并验证程序的正确性
'''
对于当前输入的3328*3328的高分辨率特征图,首先resize到640*640
然后根据当前的patch文件名(包含了patch在高分辨率图像上的行索引和列索引)
这个索引值是将高分辨率图像划分成多个没有overlap的256*256的图像块之后的行索引和列索引
行索引range(1,11),列索引range(0,12)
3328=13*256
'''

index='IDRiD_03_3_12.jpg'
raw_img_path='F:\\2\\eye_seg_con\\eye_seg\\joint_data\\raw_image\\train'
patches_path='F:\\2\\eye_seg_con\\eye_seg\\joint_data\\patches\\train'
true_patches=cv2.imread(os.path.join(patches_path,index))[:,:,::-1]

print(os.path.join(raw_img_path,index.split('_')[0]+index.split('_')[1]+'.jpg'))

hr_img=cv2.imread(os.path.join(raw_img_path,index.split('_')[0]+'_'+index.split('_')[1]+'.jpg'))[:,:,::-1]
hr_img=cv2.resize(hr_img,(640,640))# hr_img RGB

'''
640/13=49.23076923076923 记作unit
将640*640的区域平均划分成13*13份,每一份的像素点大小是unit*unit
然后将对应位置(取整)的图像块抠出来,resize成256*256大小
'''
unit=640/13
patch_row_num = int(index[:-4].split('_')[2])
patch_col_num = int(index[:-4].split('_')[3])

row_start=round(patch_row_num*unit)
row_end=round((patch_row_num+1)*unit)
col_start=round(patch_col_num*unit)
col_end=round((patch_col_num+1)*unit)

my_patch=hr_img[row_start:row_end,col_start:col_end,:]
my_patch=cv2.resize(my_patch,(256,256))
my_patch=np.array(my_patch,dtype=np.uint8)

cv2.imshow('true_patches',true_patches[:,:,::-1])
cv2.waitKey(0)

cv2.imshow('my_patch',my_patch[:,:,::-1])
cv2.waitKey(0)

# # hr_img RGB
#
# # cv2.imshow('1',hr_img[:,:,::-1])
# # cv2.waitKey(0)
#
# hr_img2=cv2.imread(os.path.join(raw_img_path,index.split('_')[0]+'_'+index.split('_')[1]+'.jpg'))
# hr_img2=cv2.resize(hr_img2,(640,640))[:,:,::-1]# hr_img2 RGB
# # cv2.imshow('2',hr_img2[:,:,::-1])
# # cv2.waitKey(0)
#
# print(np.sum(hr_img2-hr_img))# 0

# 结论:
# 对于cv2.resize函数而言,无论是先进行BGR的通道转换,再resize,还是先进行resize,再进行BGR通道转换
# 所得到的图像是相同的,即resize和通道维度的变换可交换顺序
# 实际上resize只发生在spatial dimension,而通道变换发生在channels dimension,所以空间维度上的插值变换
# 是在每个通道维度上独立进行的。
# 另外,对于计算机而言,所读取到的彩色图像就是H*W*3的矩阵而已,它本身是没有办法区分究竟是BGR格式还是RGB格式的

以上这篇python 实现从高分辨图像上抠取图像块就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • 详解Python Opencv和PIL读取图像文件的差别

    前言 之前在进行深度学习训练的时候,偶然发现使用PIL读取图片训练的效果要比使用python-opencv读取出来训练的效果稍好一些,也就是训练更容易收敛.可能的原因是两者读取出来的数据转化为pytorch中Tensor变量稍有不同,这里进行测试. 之后的代码都导入了: from PIL import Image import matplotlib.pyplot as plt import numpy as np import torch import cv2 测试 使用PIL和cv2读取图片时

  • Python OpenCV处理图像之图像像素点操作

    本文实例为大家分享了Python OpenCV图像像素点操作的具体代码,供大家参考,具体内容如下 0x01. 像素 有两种直接操作图片像素点的方法: 第一种办法就是将一张图片看成一个多维的list,例如对于一张图片im,想要操作第四行第四列的像素点就直接 im[3,3] 就可以获取到这个点的RGB值. 第二种就是使用 OpenCV 提供的 Get1D. Get2D 等函数. 推荐使用第一种办法吧,毕竟简单. 0x02. 获取行和列像素 有一下四个函数: cv.GetCol(im, 0): 返回第

  • python用opencv批量截取图像指定区域的方法

    代码如下 import os import cv2 for i in range(1,201): if i==169 or i==189: i = i+1 pth = "C:\\Users\\Desktop\\asd\\"+str(i)+".bmp" image = cv2.imread(pth) //从指定路径读取图像 cropImg = image[600:1200,750:1500] //获取感兴趣区域 cv2.imwrite("C:\\Users\

  • python 实现从高分辨图像上抠取图像块

    我就废话不多说了,直接上代码吧! #coding=utf-8 import cv2 import numpy as np import os # 程序实现功能: # 根据patch在高分辨率图像上的索引值,crop出对应区域的图像 # 并验证程序的正确性 ''' 对于当前输入的3328*3328的高分辨率特征图,首先resize到640*640 然后根据当前的patch文件名(包含了patch在高分辨率图像上的行索引和列索引) 这个索引值是将高分辨率图像划分成多个没有overlap的256*25

  • Python大数据之从网页上爬取数据的方法详解

    本文实例讲述了Python大数据之从网页上爬取数据的方法.分享给大家供大家参考,具体如下: myspider.py  : #!/usr/bin/python # -*- coding:utf-8 -*- from scrapy.spiders import Spider from lxml import etree from jredu.items import JreduItem class JreduSpider(Spider): name = 'tt' #爬虫的名字,必须的,唯一的 all

  • python实现在函数图像上添加文字和标注的方法

    如下所示: import matplotlib.pyplot as plt import numpy as np from matplotlib import font_manager #先确定字体,以免无法识别汉字 my_font = font_manager.FontProperties(fname= "C:/Windows/Fonts/msyh.ttc") X=np.linspace(-np.pi,np.pi,100) plt.figure(figsize=(6,5)) Y_x2

  • python随机在一张图像上截取任意大小图片的方法

    如下所示: ''' 机器学习中随机产生负样本的 ''' import cv2 import random #读取图片 img=cv2.imread('1.png') #h.w为想要截取的图片大小 h=80 w=80 count=1 while 1:     #随机产生x,y 此为像素内范围产生  y = random.randint(1, 890) x = random.randint(1, 1480) #随机截图  cropImg = img[(y):(y + h), (x):(x + w)]

  • Python+OpenCV实现在图像上绘制矩形

    话不多说,直接上代码 import copy import cv2 import numpy as np WIN_NAME = 'draw_rect' class Rect(object): def __init__(self): self.tl = (0, 0) self.br = (0, 0) def regularize(self): """ make sure tl = TopLeft point, br = BottomRight point ""

  • 使用python模块plotdigitizer抠取论文图片中的数据实例详解

    技术背景 对于各行各业的研究人员来说,经常会面临这样的一个问题:有一篇不错的文章里面有很好的数据,但是这个数据在文章中仅以图片的形式出现.而假如我们希望可以从该图片中提取出数据,这样就可以用我们自己的形式重新来展现这些数据,还可以额外再附上自己优化后的数据.因此从论文图片中提取数据,是一个非常实际的需求.这里以前面写的量子退火的博客为例,博客中有这样的一张图片: 在这篇文章中,我们将介绍如何使用python从图片上把数据抠取出来. plotdigitizer的安装 这里我们使用pip来安装pyt

  • Python与人工神经网络:使用神经网络识别手写图像介绍

    人体的视觉系统是一个相当神奇的存在,对于下面的一串手写图像,可以毫不费力的识别出他们是504192,轻松到让人都忘记了其实这是一个复杂的工作. 实际上在我们的大脑的左脑和右脑的皮层都有一个第一视觉区域,叫做V1,里面有14亿视觉神经元.而且,在我们识别上面的图像的时候,工作的不止有V1,还有V2.V3.V4.V5,所以这么一看,我们确实威武. 但是让计算机进行模式识别,就比较复杂了,主要困难在于我们如何给计算机描述一个数字9在图像上应该是怎样的,比如我们跟计算机说,9的上面是一个圈,下右边是1竖

  • Python OpenCV处理图像之滤镜和图像运算

    本文实例为大家分享了Python OpenCV处理图像之滤镜和图像运算的具体代码,供大家参考,具体内容如下 0x01. 滤镜 喜欢自拍的人肯定都知道滤镜了,下面代码尝试使用一些简单的滤镜,包括图片的平滑处理.灰度化.二值化等: import cv2.cv as cv image=cv.LoadImage('img/lena.jpg', cv.CV_LOAD_IMAGE_COLOR) #Load the image cv.ShowImage("Original", image) grey

  • 详解Python函数式编程—高阶函数

    函数式编程就是一种抽象程度很高的编程范式,纯粹的函数式编程语言编写的函数没有变量,因此,任意一个函数,只要输入是确定的,输出就是确定的,这种纯函数我们称之为没有副作用.而允许使用变量的程序设计语言,由于函数内部的变量状态不确定,同样的输入,可能得到不同的输出,因此,这种函数是有副作用的. 函数式编程的一个特点就是,允许把函数本身作为参数传入另一个函数,还允许返回一个函数! Python对函数式编程提供部分支持.由于Python允许使用变量,因此,Python不是纯函数式编程语言. 高阶函数 变量

  • Python实现鼠标自动在屏幕上随机移动功能

    本来想控制鼠标自动移动防止公司电脑自动休眠的策略,然而,实现了并没什么卵用,还是会休眠.但还是分享出来吧.win10的系统. 首先要安装几个第三方的包:pymouse.pyhook.pywin32.pyuserinput.别看代码里值引用pymouse和win32api,如果不把这些都装了,运行时就会报错. 下面来看下代码吧. from pymouse import PyMouse from win32api import GetSystemMetrics import random impor

随机推荐