11个Python Pandas小技巧让你的工作更高效(附代码实例)

本文为你介绍Pandas隐藏的炫酷小技巧,我相信这些会对你有所帮助。

或许本文中的某些命令你早已知晓,只是没意识到它还有这种打开方式。

Pandas是一个在Python中广泛应用的数据分析包。市面上有很多关于Pandas的经典教程,但本文介绍几个隐藏的炫酷小技巧,我相信这些会对你有所帮助。

1. read_csv

这是读取数据的入门级命令。当要你所读取的数据量特别大时,试着加上这个参数nrows = 5,就可以在载入全部数据前先读取一小部分数据。如此一来,就可以避免选错分隔符这样的错误啦(数据不一定都是用逗号来分隔)。

(或者在linux系统中,你可以使用‘head'来展示任意文本文件的前五行:head -c 5 data.txt)

接下来,用 df.columns.tolist() 可以提取每一列并转换成list。还可以加上usecols = [‘c1', ‘c2', … ]来载入所需要的指定列。另外,如果你知道某些列的类型,你可以加上dtype = {‘c1': str, ‘c2': int, …} ,这样会加快载入的速度。加入这些参数的另一大好处是,如果这一列中同时含有字符串和数值类型,而你提前声明把这一列看作是字符串,那么这一列作为主键来融合多个表时,就不会报错了。

2. select_dtypes

如果已经在Python中完成了数据的预处理,这个命令可以帮你节省一定的时间。在读取了表格之后,每一列的默认数据类型将会是bool,int64,float64,object,category,timedelta64,或者datetime64。首先你可以观察一下大致情况,使用:

df.dtypes.value_counts() 

来了解你的dataframe的每项数据类型,然后再使用:

df.select_dtypes(include=['float64', 'int64']) 

获取一个仅由数值类型组成的sub-dataframe。

3. copy

如果你没听说过它的话,我不得强调它的重要性。输入下面的命令:

import pandas as pd
df1 = pd.DataFrame({ 'a':[0,0,0], 'b': [1,1,1]})
df2 = df1
df2['a'] = df2['a'] + 1
df1.head()

你会发现df1已经发生了改变。这是因为df2 = df1并不是生成一个df1的复制品并把它赋值给df2,而是设定一个指向df1的指针。所以只要是针对df2的改变,也会相应地作用在df1上。为了解决这个问题,你既可以这样做:

df2 = df1.copy() 

也可以这样做:

from copy import deepcopy
df2 = deepcopy(df1)

4. map

这个炫酷的命令让你的数据转换变得轻松。首先定义一个

dictionary,“key”是转换前的旧值,而“values”是转换后的新值。

level_map = {1: 'high', 2: 'medium', 3: 'low'}
df['c_level'] = df['c'].map(level_map) 

几个适用情景:把True、False,转换成1、0(为了建模);定义级别;使用字典编码。

5. 用不用apply?

如果我们想在现有几列的基础上生成一个新列,并一同作为输入,那么有时apply函数会相当有帮助。

def rule(x, y):
 if x == 'high' and y > 10:
 return 1
 else:
 return 0
df = pd.DataFrame({ 'c1':[ 'high' ,'high', 'low', 'low'], 'c2': [0, 23, 17, 4]})
df['new'] = df.apply(lambda x: rule(x['c1'], x['c2']), axis = 1)
df.head()

在上面的代码中,我们定义了一个有两个输入变量的函数,并依靠apply函数使其作用到列“c1”和“c2”上。

但是apply函数在有些情况下实在是太慢了。如果你是想计算“c1”和“c2”列的最大值,你当然可以这样去做:

df['maximum'] = df.apply(lambda x: max(x['c1'], x['c2']), axis = 1)

但你会发现相比于以下命令,apply实在是慢太多了:

df['maximum'] = df[['c1','c2']].max(axis =1)

结论:如果你可以采用其他内置函数(他们一般速度更快),请不要使用apply。比如说,如果你想把“c”列的值近似取整,那么请用round(df[‘c'], 0)或df['c'],round(0)而不是上文的apply函数。

7. value counts

这个命令用于检查值的分布。你想要检查下“c”列中出现的值以及每个值所出现的频率,可以使用:

df['c'].value_counts(

下面是一些有用的小技巧/参数:

  • normalize = True:查看每个值出现的频率而不是频次数。
  • dropna = False: 把缺失值也保留在这次统计中。
  • sort = False: 将数据按照值来排序而不是按照出现次数排序。
  • df[‘c].value_counts().reset_index(): 将这个统计表转换成pandas的dataframe并且进行处理。

8. 缺失值的数量

当构建模型时,我们可能会去除包含过多缺失值或是全部是缺失值的行。这时可以使用.isnull()和.sum()来计算指定列缺失值的数量。

import pandas as pd
import numpy as np
df = pd.DataFrame({ 'id': [1,2,3], 'c1':[0,0,np.nan], 'c2': [np.nan,1,1]})
df = df[['id', 'c1', 'c2']]
df['num_nulls'] = df[['c1', 'c2']].isnull().sum(axis=1)
df.head()

在SQL中我们可以使用 SELECT * FROM … WHERE ID in (‘A001',‘C022', …)来获取含有指定ID的记录。如果你也想在Pandas中做类似的事情,你可以使用:

df_filter = df['ID'].isin(['A001','C022',...])
df[df_filter]

10. 基于分位数分组

面对一列数值,你想将这一列的值进行分组,比如说最前面的5%放入组别一,5-20%放入组别二,20%-50%放入组别三,最后的50%放入组别四。当然,你可以使用pandas.cut,但你也可以使用下面这种选择:

import numpy as np
cut_points = [np.percentile(df['c'], i) for i in [50, 80, 95]]
df['group'] = 1
for i in range(3):
 df['group'] = df['group'] + (df['c'] < cut_points[i])
# or <= cut_points[i]

这种方法的运行速度很快(并没有使用到apply函数)。

11. to_csv

这又是一个大家都会用的命令。我想在这里列出两个小技巧。首先是

print(df[:5].to_csv())

你可以使用这个命令打印出将要输出文件中的前五行记录。

另一个技巧是用来处理整数值和缺失值混淆在一起的情况。如果一列含有缺失值和整数值,那么这一列的数据类型会变成float而不是int。当导出表格时,你可以加上float_format=‘%.0f'以便将所有的浮点数近似成整数。当你想把所有列的输出值都变成整数格式时,就可以使用这个技巧,这样一来你就会告别所有数值后带“.0”的烦恼。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • 了解不常见但是实用的Python技巧

    1.交换变量值 2.将一列表中的所有元素拼接成字符串 3.查找list中最高频率的值 4.检查两个单词是否是字谜(组成的字母和对应数量一致) 5.反转字符串 6.反转列表 7.转置2维数组 8.链式比较 9.链式函数调用 10.复制列表 11.Dictionary Get 12.按值排序字典 13.For Else 14.将列表转换为逗号分隔的字符串 15.合并字典 16.list中的最小和最大索引 17.从列表中删除重复项 查看英文原文 :https://hackernoon.com/pyth

  • 3分钟学会一个Python小技巧

    Python时间日期转换在开发中是非常高频的一个操作,你经常会遇到需要将字符串转换成 datetime 或者是反过来将 datetime 转换成字符串. datetime 分别提供了两个方法 strptime 和 strftime ,但是我们老是被这两个方法搞混,不知道哪个是字符串转 datetime,哪个是 datetime 转字符串,每次都要去百度 Google 一下,或者跑去查个文档. 其实,这两个方法可以稍微用点技巧把这两个方法记住,而且是永远的记住. strptime strptime

  • python使用pandas处理大数据节省内存技巧(推荐)

    一般来说,用pandas处理小于100兆的数据,性能不是问题.当用pandas来处理100兆至几个G的数据时,将会比较耗时,同时会导致程序因内存不足而运行失败. 当然,像Spark这类的工具能够胜任处理100G至几个T的大数据集,但要想充分发挥这些工具的优势,通常需要比较贵的硬件设备.而且,这些工具不像pandas那样具有丰富的进行高质量数据清洗.探索和分析的特性.对于中等规模的数据,我们的愿望是尽量让pandas继续发挥其优势,而不是换用其他工具. 本文我们讨论pandas的内存使用,展示怎样

  • Python玩转加密的技巧【推荐】

    密码学俱乐部的第一条规则是:永远不要自己发明密码系统.密码学俱乐部的第二条规则是:永远不要自己实现密码系统:在现实世界中,在实现以及设计密码系统阶段都找到过许多漏洞. Python 中的一个有用的基本加密库就叫做 cryptography .它既是一个"安全"方面的基础库,也是一个"危险"层."危险"层需要更加小心和相关的知识,并且使用它很容易出现安全漏洞.在这篇介绍性文章中,我们不会涵盖"危险"层中的任何内容! crypto

  • 值得收藏,Python 开发中的高级技巧

    Python 开发中有哪些高级技巧?这是知乎上一个问题,我总结了一些常见的技巧在这里,可能谈不上多高级,但掌握这些至少可以让你的代码看起来 Pythonic 一点.如果你还在按照类C语言的那套风格来写的话,在 code review 恐怕会要被吐槽了. 列表推导式 >>> chars = [ c for c in 'python' ] >>> chars ['p', 'y', 't', 'h', 'o', 'n'] 字典推导式 >>> dict1 =

  • 11个Python Pandas小技巧让你的工作更高效(附代码实例)

    本文为你介绍Pandas隐藏的炫酷小技巧,我相信这些会对你有所帮助. 或许本文中的某些命令你早已知晓,只是没意识到它还有这种打开方式. Pandas是一个在Python中广泛应用的数据分析包.市面上有很多关于Pandas的经典教程,但本文介绍几个隐藏的炫酷小技巧,我相信这些会对你有所帮助. 1. read_csv 这是读取数据的入门级命令.当要你所读取的数据量特别大时,试着加上这个参数nrows = 5,就可以在载入全部数据前先读取一小部分数据.如此一来,就可以避免选错分隔符这样的错误啦(数据不

  • 常用的10个Python实用小技巧

    大家好,都说追女孩方法大于态度,学Python也是,今天就给大家分享的是我在用Python编写程序时常用的一些小技巧. 1.多次打印同一个字符 在Python中,不用特地写一个函数来重复打印同一个字符,直接使用Print就可以 tem = 'I Love Python ' print(tem * 3) I Love Python I Love Python I Love Python 2.在函数内部使用生成器 在写Python程序时,我们可以在函数内部直接使用生成器,这样可以使代码更简洁. su

  • 3 个超有用的 Python 编程小技巧

    目录 1.如何按照字典的值的大小进行排序 2.优雅的一次性判断多个条件 3.如何优雅的合并两个字典 1.如何按照字典的值的大小进行排序 我们知道,字典的本质是哈希表,本身是无法排序的,但 Python 3.6 之后,字典是可以按照插入的顺序进行遍历的,这就是有序字典,其中的原理,可以阅读 Python3.6 之后字典是有序的? . 知道了这一点,就好办了,先把字典的键值对列表排序,然后重新插入新的字典,这样新字典就可以按照值的大小进行遍历输出. 代码如下: >>> xs = {'a':

  • 分享11个常用JavaScript小技巧

    目录 1.通过条件判断向对象添加属性 2.检查对象中是否存在某个属性 3.解构赋值 4.循环遍历一个对象的key和value 5.使用可选链(Optionalchaining)避免访问对象属性报错 6.检查数组中falsy的值 7.数组去重 8.检查是否为数组类型 9.数字&字符串类型转换 10.巧用空值合并(??) 11.通过!!进行布尔转换 在我们的日常开发过程中,我们经常会遇到数字与字符串转换,检查对象中是否存在对应值,条件性操作对象数据,过滤数组中的错误值,等等这类处理. 在这里,整理出

  • 分享5个小技巧让你写出更好的 JavaScript 条件语句

    在使用 JavaScript 时,我们常常要写不少的条件语句.这里有五个小技巧,可以让你写出更干净.漂亮的条件语句. 1. 使用 Array.includes 来处理多重条件 举个栗子 : // 条件语句 function test(fruit) { if (fruit == 'apple' || fruit == 'strawberry') { console.log('red'); } } 乍一看,这么写似乎没什么大问题.然而,如果我们想要匹配更多的红色水果呢,比方说『樱桃』和『蔓越莓』?我

  • 微信小程序 拍照或从相册选取图片上传代码实例

    这篇文章主要介绍了微信小程序 拍照或从相册选取图片上传代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 upload.wxml <!--pages/upload/upload.wxml--> <button bindtap='uploadPhoto'>拍照选取照片上传</button> upload.js // pages/upload/upload.js Page({ data: { imgData: [] }

  • 微信小程序和H5页面间相互跳转代码实例

    这篇文章主要介绍了微信小程序和H5页面间相互跳转代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 1.微信小程序跳转小程序 wx.navigateToMiniProgram // 小程序跳转 /* * appId string 是 要打开的小程序 appId * path string 否 打开的页面路径,如果为空则打开首页 * extraData object 否 需要传递给目标小程序的数据,目标小程序可在 App.onLaunch,A

  • 微信小程序点击顶部导航栏切换样式代码实例

    这篇文章主要介绍了微信小程序点击顶部导航栏切换样式代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 类似这样的效果 <view class='helpCateList'> <!-- 类别 --> <scroll-view class='scroll-view' scroll-x="true"> <view class="item-content" wx:key=&qu

  • Python常用小技巧总结

    本文实例总结了Python常用的小技巧.分享给大家供大家参考.具体分析如下: 1. 获取本地mac地址: import uuid mac = uuid.uuid1().hex[-12:] print(mac) 运行结果:e0cb4e077585 2. del 的使用 a = ['b','c','d'] del a[0] print(a)# 输出 ['c', 'd'] a = ['b','c','d'] del a[0:2] # 删除从第1个元素开始,到第2个元素 print(a)# 输出 ['d

  • Python学习小技巧之列表项的拼接

    本文介绍的是关于Python实现列表项拼接的一个小技巧,分享出来供大家参考学习,下面来看看详细的介绍: 典型代码: data_list = ['a', 'b', 'c', 'd', 'e', 'f'] separator = '\t' data_joined = separator.join(data_list) print(data_joined) 其输出为: a b c d e f 应用场景 在实现很多业务需求的时候,需要将列表中的每一项按照某种分隔符拼接成一个串,以完成某种序列化模式,用于

随机推荐