Python搭建Keras CNN模型破解网站验证码的实现

在本项目中,将会用Keras来搭建一个稍微复杂的CNN模型来破解以上的验证码。验证码如下:

利用Keras可以快速方便地搭建CNN模型,本项目搭建的CNN模型如下:

将数据集分为训练集和测试集,占比为8:2,该模型训练的代码如下:

# -*- coding: utf-8 -*-
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from matplotlib import pyplot as plt

from keras.utils import np_utils, plot_model
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation, Flatten
from keras.callbacks import EarlyStopping
from keras.layers import Conv2D, MaxPooling2D

# 读取数据
df = pd.read_csv('./data.csv')

# 标签值
vals = range(31)
keys = ['1','2','3','4','5','6','7','8','9','A','B','C','D','E','F','G','H','J','K','L','N','P','Q','R','S','T','U','V','X','Y','Z']
label_dict = dict(zip(keys, vals))

x_data = df[['v'+str(i+1) for i in range(320)]]
y_data = pd.DataFrame({'label':df['label']})
y_data['class'] = y_data['label'].apply(lambda x: label_dict[x])

# 将数据分为训练集和测试集
X_train, X_test, Y_train, Y_test = train_test_split(x_data, y_data['class'], test_size=0.3, random_state=42)
x_train = np.array(X_train).reshape((1167, 20, 16, 1))
x_test = np.array(X_test).reshape((501, 20, 16, 1))

# 对标签值进行one-hot encoding
n_classes = 31
y_train = np_utils.to_categorical(Y_train, n_classes)
y_val = np_utils.to_categorical(Y_test, n_classes)

input_shape = x_train[0].shape

# CNN模型
model = Sequential()

# 卷积层和池化层
model.add(Conv2D(32, kernel_size=(3, 3), input_shape=input_shape, padding='same'))
model.add(Activation('relu'))
model.add(Conv2D(32, kernel_size=(3, 3), padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2), padding='same'))

# Dropout层
model.add(Dropout(0.25))

model.add(Conv2D(64, kernel_size=(3, 3), padding='same'))
model.add(Activation('relu'))
model.add(Conv2D(64, kernel_size=(3, 3), padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2), padding='same'))

model.add(Dropout(0.25))

model.add(Conv2D(128, kernel_size=(3, 3), padding='same'))
model.add(Activation('relu'))
model.add(Conv2D(128, kernel_size=(3, 3), padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2), padding='same'))

model.add(Dropout(0.25))

model.add(Flatten())

# 全连接层
model.add(Dense(256, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(128, activation='relu'))
model.add(Dense(n_classes, activation='softmax'))

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

# plot model
##plot_model(model, to_file=r'./model.png', show_shapes=True)

# 模型训练
callbacks = [EarlyStopping(monitor='val_acc', patience=5, verbose=1)]
batch_size = 64
n_epochs = 100
history = model.fit(x_train, y_train, batch_size=batch_size, epochs=n_epochs, \
          verbose=1, validation_data=(x_test, y_val), callbacks=callbacks)

mp = './verifycode_Keras.h5'
model.save(mp)

# 绘制验证集上的准确率曲线
val_acc = history.history['val_acc']
plt.plot(range(len(val_acc)), val_acc, label='CNN model')
plt.title('Validation accuracy on verifycode dataset')
plt.xlabel('epochs')
plt.ylabel('accuracy')
plt.legend()
plt.show()

在上述代码中,训练模型的时候采用了early stopping技巧。early stopping是用于提前停止训练的callbacks。具体地,可以达到当训练集上的loss不在减小(即减小的程度小于某个阈值)的时候停止继续训练。

运行上述模型训练代码,输出的结果如下:

......(忽略之前的输出)
Epoch 22/100

 64/1167 [>.............................] - ETA: 3s - loss: 0.0399 - acc: 1.0000
 128/1167 [==>...........................] - ETA: 3s - loss: 0.1195 - acc: 0.9844
 192/1167 [===>..........................] - ETA: 2s - loss: 0.1085 - acc: 0.9792
 256/1167 [=====>........................] - ETA: 2s - loss: 0.1132 - acc: 0.9727
 320/1167 [=======>......................] - ETA: 2s - loss: 0.1045 - acc: 0.9750
 384/1167 [========>.....................] - ETA: 2s - loss: 0.1006 - acc: 0.9740
 448/1167 [==========>...................] - ETA: 2s - loss: 0.1522 - acc: 0.9643
 512/1167 [============>.................] - ETA: 1s - loss: 0.1450 - acc: 0.9648
 576/1167 [=============>................] - ETA: 1s - loss: 0.1368 - acc: 0.9653
 640/1167 [===============>..............] - ETA: 1s - loss: 0.1353 - acc: 0.9641
 704/1167 [=================>............] - ETA: 1s - loss: 0.1280 - acc: 0.9659
 768/1167 [==================>...........] - ETA: 1s - loss: 0.1243 - acc: 0.9674
 832/1167 [====================>.........] - ETA: 0s - loss: 0.1577 - acc: 0.9639
 896/1167 [======================>.......] - ETA: 0s - loss: 0.1488 - acc: 0.9665
 960/1167 [=======================>......] - ETA: 0s - loss: 0.1488 - acc: 0.9656
1024/1167 [=========================>....] - ETA: 0s - loss: 0.1427 - acc: 0.9668
1088/1167 [==========================>...] - ETA: 0s - loss: 0.1435 - acc: 0.9669
1152/1167 [============================>.] - ETA: 0s - loss: 0.1383 - acc: 0.9688
1167/1167 [==============================] - 4s 3ms/step - loss: 0.1380 - acc: 0.9683 - val_loss: 0.0835 - val_acc: 0.9760
Epoch 00022: early stopping

可以看到,花费几分钟,一共训练了21次,最近一次的训练后,在测试集上的准确率为96.83%。在测试集的准确率曲线如下图:

模型训练完后,我们对新的验证码进行预测。新的100张验证码如下图:

使用训练好的CNN模型,对这些新的验证码进行预测,预测的Python代码如下:

# -*- coding: utf-8 -*-

import os
import cv2
import numpy as np

def split_picture(imagepath):

  # 以灰度模式读取图片
  gray = cv2.imread(imagepath, 0)

  # 将图片的边缘变为白色
  height, width = gray.shape
  for i in range(width):
    gray[0, i] = 255
    gray[height-1, i] = 255
  for j in range(height):
    gray[j, 0] = 255
    gray[j, width-1] = 255

  # 中值滤波
  blur = cv2.medianBlur(gray, 3) #模板大小3*3

  # 二值化
  ret,thresh1 = cv2.threshold(blur, 200, 255, cv2.THRESH_BINARY)

  # 提取单个字符
  chars_list = []
  image, contours, hierarchy = cv2.findContours(thresh1, 2, 2)
  for cnt in contours:
    # 最小的外接矩形
    x, y, w, h = cv2.boundingRect(cnt)
    if x != 0 and y != 0 and w*h >= 100:
      chars_list.append((x,y,w,h))

  sorted_chars_list = sorted(chars_list, key=lambda x:x[0])
  for i,item in enumerate(sorted_chars_list):
    x, y, w, h = item
    cv2.imwrite('test_verifycode/%d.jpg'%(i+1), thresh1[y:y+h, x:x+w])

def remove_edge_picture(imagepath):

  image = cv2.imread(imagepath, 0)
  height, width = image.shape
  corner_list = [image[0,0] < 127,
          image[height-1, 0] < 127,
          image[0, width-1]<127,
          image[ height-1, width-1] < 127
          ]
  if sum(corner_list) >= 3:
    os.remove(imagepath)

def resplit_with_parts(imagepath, parts):
  image = cv2.imread(imagepath, 0)
  os.remove(imagepath)
  height, width = image.shape

  file_name = imagepath.split('/')[-1].split(r'.')[0]
  # 将图片重新分裂成parts部分
  step = width//parts   # 步长
  start = 0       # 起始位置
  for i in range(parts):
    cv2.imwrite('./test_verifycode/%s.jpg'%(file_name+'-'+str(i)), \
          image[:, start:start+step])
    start += step

def resplit(imagepath):

  image = cv2.imread(imagepath, 0)
  height, width = image.shape

  if width >= 64:
    resplit_with_parts(imagepath, 4)
  elif width >= 48:
    resplit_with_parts(imagepath, 3)
  elif width >= 26:
    resplit_with_parts(imagepath, 2)

# rename and convert to 16*20 size
def convert(dir, file):

  imagepath = dir+'/'+file
  # 读取图片
  image = cv2.imread(imagepath, 0)
  # 二值化
  ret, thresh = cv2.threshold(image, 127, 255, cv2.THRESH_BINARY)
  img = cv2.resize(thresh, (16, 20), interpolation=cv2.INTER_AREA)
  # 保存图片
  cv2.imwrite('%s/%s' % (dir, file), img)

# 读取图片的数据,并转化为0-1值
def Read_Data(dir, file):

  imagepath = dir+'/'+file
  # 读取图片
  image = cv2.imread(imagepath, 0)
  # 二值化
  ret, thresh = cv2.threshold(image, 127, 255, cv2.THRESH_BINARY)
  # 显示图片
  bin_values = [1 if pixel==255 else 0 for pixel in thresh.ravel()]

  return bin_values

def predict(VerifyCodePath):

  dir = './test_verifycode'
  files = os.listdir(dir)

  # 清空原有的文件
  if files:
    for file in files:
      os.remove(dir + '/' + file)

  split_picture(VerifyCodePath)

  files = os.listdir(dir)
  if not files:
    print('查看的文件夹为空!')
  else:

    # 去除噪声图片
    for file in files:
      remove_edge_picture(dir + '/' + file)

    # 对黏连图片进行重分割
    for file in os.listdir(dir):
      resplit(dir + '/' + file)

    # 将图片统一调整至16*20大小
    for file in os.listdir(dir):
      convert(dir, file)

    # 图片中的字符代表的向量
    files = sorted(os.listdir(dir), key=lambda x: x[0])
    table = np.array([Read_Data(dir, file) for file in files]).reshape(-1,20,16,1)

    # 模型保存地址
    mp = './verifycode_Keras.h5'
    # 载入模型
    from keras.models import load_model
    cnn = load_model(mp)
    # 模型预测
    y_pred = cnn.predict(table)
    predictions = np.argmax(y_pred, axis=1)

    # 标签字典
    keys = range(31)
    vals = ['1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'J', 'K', 'L', 'N',
        'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'X', 'Y', 'Z']
    label_dict = dict(zip(keys, vals))

    return ''.join([label_dict[pred] for pred in predictions])

def main():

  dir = './VerifyCode/'
  correct = 0
  for i, file in enumerate(os.listdir(dir)):
    true_label = file.split('.')[0]
    VerifyCodePath = dir+file
    pred = predict(VerifyCodePath)

    if true_label == pred:
      correct += 1
    print(i+1, (true_label, pred), true_label == pred, correct)

  total = len(os.listdir(dir))
  print('\n总共图片:%d张\n识别正确:%d张\n识别准确率:%.2f%%.'\
     %(total, correct, correct*100/total))

main()

以下是该CNN模型的预测结果:

Using TensorFlow backend.
2018-10-25 15:13:50.390130: I C: f_jenkinsworkspace
el-winMwindowsPY35 ensorflowcoreplatformcpu_feature_guard.cc:140] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2
1 ('ZK6N', 'ZK6N') True 1
2 ('4JPX', '4JPX') True 2
3 ('5GP5', '5GP5') True 3
4 ('5RQ8', '5RQ8') True 4
5 ('5TQP', '5TQP') True 5
6 ('7S62', '7S62') True 6
7 ('8R2Z', '8R2Z') True 7
8 ('8RFV', '8RFV') True 8
9 ('9BBT', '9BBT') True 9
10 ('9LNE', '9LNE') True 10
11 ('67UH', '67UH') True 11
12 ('74UK', '74UK') True 12
13 ('A5T2', 'A5T2') True 13
14 ('AHYV', 'AHYV') True 14
15 ('ASEY', 'ASEY') True 15
16 ('B371', 'B371') True 16
17 ('CCQL', 'CCQL') True 17
18 ('CFD5', 'GFD5') False 17
19 ('CJLJ', 'CJLJ') True 18
20 ('D4QV', 'D4QV') True 19
21 ('DFQ8', 'DFQ8') True 20
22 ('DP18', 'DP18') True 21
23 ('E3HC', 'E3HC') True 22
24 ('E8VB', 'E8VB') True 23
25 ('DE1U', 'DE1U') True 24
26 ('FK1R', 'FK1R') True 25
27 ('FK91', 'FK91') True 26
28 ('FSKP', 'FSKP') True 27
29 ('FVZP', 'FVZP') True 28
30 ('GC6H', 'GC6H') True 29
31 ('GH62', 'GH62') True 30
32 ('H9FQ', 'H9FQ') True 31
33 ('H67Q', 'H67Q') True 32
34 ('HEKC', 'HEKC') True 33
35 ('HV2B', 'HV2B') True 34
36 ('J65Z', 'J65Z') True 35
37 ('JZCX', 'JZCX') True 36
38 ('KH5D', 'KH5D') True 37
39 ('KXD2', 'KXD2') True 38
40 ('1GDH', '1GDH') True 39
41 ('LCL3', 'LCL3') True 40
42 ('LNZR', 'LNZR') True 41
43 ('LZU5', 'LZU5') True 42
44 ('N5AK', 'N5AK') True 43
45 ('N5Q3', 'N5Q3') True 44
46 ('N96Z', 'N96Z') True 45
47 ('NCDG', 'NCDG') True 46
48 ('NELS', 'NELS') True 47
49 ('P96U', 'P96U') True 48
50 ('PD42', 'PD42') True 49
51 ('PECG', 'PEQG') False 49
52 ('PPZF', 'PPZF') True 50
53 ('PUUL', 'PUUL') True 51
54 ('Q2DN', 'D2DN') False 51
55 ('QCQ9', 'QCQ9') True 52
56 ('QDB1', 'QDBJ') False 52
57 ('QZUD', 'QZUD') True 53
58 ('R3T5', 'R3T5') True 54
59 ('S1YT', 'S1YT') True 55
60 ('SP7L', 'SP7L') True 56
61 ('SR2K', 'SR2K') True 57
62 ('SUP5', 'SVP5') False 57
63 ('T2SP', 'T2SP') True 58
64 ('U6V9', 'U6V9') True 59
65 ('UC9P', 'UC9P') True 60
66 ('UFYD', 'UFYD') True 61
67 ('V9NJ', 'V9NH') False 61
68 ('V35X', 'V35X') True 62
69 ('V98F', 'V98F') True 63
70 ('VD28', 'VD28') True 64
71 ('YGHE', 'YGHE') True 65
72 ('YNKD', 'YNKD') True 66
73 ('YVXV', 'YVXV') True 67
74 ('ZFBS', 'ZFBS') True 68
75 ('ET6X', 'ET6X') True 69
76 ('TKVC', 'TKVC') True 70
77 ('2UCU', '2UCU') True 71
78 ('HNBK', 'HNBK') True 72
79 ('X8FD', 'X8FD') True 73
80 ('ZGNX', 'ZGNX') True 74
81 ('LQCU', 'LQCU') True 75
82 ('JNZY', 'JNZVY') False 75
83 ('RX34', 'RX34') True 76
84 ('811E', '811E') True 77
85 ('ETDX', 'ETDX') True 78
86 ('4CPR', '4CPR') True 79
87 ('FE91', 'FE91') True 80
88 ('B7XH', 'B7XH') True 81
89 ('1RUA', '1RUA') True 82
90 ('UBCX', 'UBCX') True 83
91 ('KVT5', 'KVT5') True 84
92 ('HZ3A', 'HZ3A') True 85
93 ('3XLR', '3XLR') True 86
94 ('VC7T', 'VC7T') True 87
95 ('7PG1', '7PQ1') False 87
96 ('4F21', '4F21') True 88
97 ('3HLJ', '3HLJ') True 89
98 ('1KT7', '1KT7') True 90
99 ('1RHE', '1RHE') True 91
100 ('1TTA', '1TTA') True 92

总共图片:100张
识别正确:92张
识别准确率:92.00%.

可以看到,该训练后的CNN模型,其预测新验证的准确率在90%以上。

Demo及数据集下载网站:CNN_4_Verifycode_jb51.rar

到此这篇关于Python搭建Keras CNN模型破解网站验证码的实现的文章就介绍到这了,更多相关Python Keras CNN破解网站验证码内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 利用Python破解验证码实例详解

    一.前言 本实验将通过一个简单的例子来讲解破解验证码的原理,将学习和实践以下知识点: Python基本知识 PIL模块的使用 二.实例详解 安装 pillow(PIL)库: $ sudo apt-get update $ sudo apt-get install python-dev $ sudo apt-get install libtiff5-dev libjpeg8-dev zlib1g-dev \ libfreetype6-dev liblcms2-dev libwebp-dev tcl

  • python破解bilibili滑动验证码登录功能

    地址:https://passport.bilibili.com/login 左图事完整验证码图,右图是有缺口的验证码图                                    步骤: 1.准备bilibili账号 2.工具:pycharm selenium chromedriver PIL 3.破解思路: 找到完整验证码和有缺口的验证码图片,然后计算缺口坐标,再利用selenium移动按钮到指定位置,齐活 步骤代码如下: 先导入需要的包和库 from selenium impor

  • Python实现破解12306图片验证码的方法分析

    本文实例讲述了Python实现破解12306图片验证码的方法.分享给大家供大家参考,具体如下: 不知从何时起,12306的登录验证码竟然变成了按字找图,可以说是又提高了一个等次,竟然把图像识别都用上了.不过有些图片,不得不说有些变态,图片的清晰图就更别说了,明显是从网络上的图库中搬过来的. 谁知没多久,网络就惊现破解12306图片验证码的Python代码了,作为一个爱玩爱刺激的网虫,当然要分享一份过来. 代码大致流程: 1.将验证码图片下载下来,然后切图: 2.利用百度识图进行图片分析: 3.再

  • python滑块验证码的破解实现

    破解滑块验证码的思路主要有2种: 获得一张完整的背景图和一张有缺口的图片,两张图片进行像素上的一一对比,找出不一样的坐标. 获得一张有缺口的图片和需要验证的小图,两张图片进行二极化以及归一化,确定小图在图片中间的坐标. 之后就要使用初中物理知识了,使用直线加速度模仿人手动操作 本次就使用第2种,第一种比较简单.废话不多说,直接上代码: 以下均利用无头浏览器进行获取 获得滑块验证的小图片 def get_image1(self,driver): """ 获取滑块验证缺口小图片

  • python3 破解 geetest(极验)的滑块验证码功能

    下面一段代码给大家介绍python破解geetest 验证码功能,具体代码如下所示: from selenium import webdriver from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.common.action_chains import ActionChains import PIL.Image as image import time,re, random import

  • Python 点击指定位置验证码破解的实现代码

    思路: 创建浏览器驱动对象 加载登录页面 等待页面加载完毕 切换到用户名和密码登录模式 输入手机号, 注意此处需要等待并获取输入框 输入密码 点击验证按钮 获取弹出验证图片 使用超级鹰打码平台识别图形的坐标 获取到坐标信息, x,y坐标分别除以2; 由于电脑分辨率太过了, 是原来的两倍, 如果是普通分辨率可以除以2,直接用就可以了. 把鼠标移动到, 坐标点的位置进行点击 点击登录按钮 from selenium import webdriver from selenium.webdriver.c

  • Python模拟登录之滑块验证码的破解(实例代码)

    模拟登录之滑块验证码的破解,具体代码如下所示: # 图像处理标准库 from PIL import Image # web测试 from selenium import webdriver # 鼠标操作 from selenium.webdriver.common.action_chains import ActionChains # 等待时间 产生随机数 import time, random # 滑块移动轨迹 def get_tracks1(distance): # 初速度 v = 0 #

  • Python破解BiliBili滑块验证码的思路详解(完美避开人机识别)

    准备工作 B站登录页 https://passport.bilibili.com/login python3 pip install selenium (webdriver框架) pip install PIL (图片处理) chrome driver:http://chromedriver.storage.googleapis.com/index.html firefox driver:https://github.com/mozilla/geckodriver/releases B站的滑块验

  • Python搭建Keras CNN模型破解网站验证码的实现

    在本项目中,将会用Keras来搭建一个稍微复杂的CNN模型来破解以上的验证码.验证码如下: 利用Keras可以快速方便地搭建CNN模型,本项目搭建的CNN模型如下: 将数据集分为训练集和测试集,占比为8:2,该模型训练的代码如下: # -*- coding: utf-8 -*- import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from matplotlib im

  • python神经网络Keras GhostNet模型的实现

    目录 什么是GhostNet模型 GhostNet模型的实现思路 1.Ghost Module 2.Ghost Bottlenecks 3.Ghostnet的构建 GhostNet的代码构建 1.模型代码的构建 2.Yolov4上的应用 什么是GhostNet模型 GhostNet是华为诺亚方舟实验室提出来的一个非常有趣的网络,我们一起来学习一下. 2020年,华为新出了一个轻量级网络,命名为GhostNet. 在优秀CNN模型中,特征图存在冗余是非常重要的.如图所示,这个是对ResNet-50

  • python下调用pytesseract识别某网站验证码的实现方法

    一.pytesseract介绍 1.pytesseract说明 pytesseract最新版本0.1.6,网址:https://pypi.python.org/pypi/pytesseract Python-tesseract is a wrapper for google's Tesseract-OCR ( http://code.google.com/p/tesseract-ocr/ ). It is also useful as a stand-alone invocation scrip

  • Python实现Keras搭建神经网络训练分类模型教程

    我就废话不多说了,大家还是直接看代码吧~ 注释讲解版: # Classifier example import numpy as np # for reproducibility np.random.seed(1337) # from keras.datasets import mnist from keras.utils import np_utils from keras.models import Sequential from keras.layers import Dense, Act

  • 小白入门篇使用Python搭建点击率预估模型

    点击率预估模型 0.前言 本篇是一个基础机器学习入门篇文章,帮助我们熟悉机器学习中的神经网络结构与使用. 日常中习惯于使用Python各种成熟的机器学习工具包,例如sklearn.TensorFlow等等,来快速搭建各种各样的机器学习模型来解决各种业务问题. 本文将从零开始,仅仅利用基础的numpy库,使用Python实现一个最简单的神经网络(或者说是简易的LR,因为LR就是一个单层的神经网络),解决一个点击率预估的问题. 1.假设一个业务场景 声明:为了简单起见,下面的一切设定从简-. 定义需

  • Python Selenium破解滑块验证码最新版(GEETEST95%以上通过率)

    一.滑块验证码简述 有爬虫,自然就有反爬虫,就像病毒和杀毒软件一样,有攻就有防,两者彼此推进发展.而目前最流行的反爬技术验证码,为了防止爬虫自动注册,批量生成垃圾账号,几乎所有网站的注册页面都会用到验证码技术.其实验证码的英文为 CAPTCHA(Completely Automated Public Turing test to tell Computers and Humans Apart),翻译成中文就是全自动区分计算机和人类的公开图灵测试,它是一种可以区分用户是计算机还是人的测试,只要能通

  • 用Python爬虫破解滑动验证码的案例解析

    做爬虫总会遇到各种各样的反爬限制,反爬的第一道防线往往在登录就出现了,为了限制爬虫自动登录,各家使出了浑身解数,所谓道高一尺魔高一丈. 今天分享个如何简单处理滑动图片的验证码的案例. 类似这种拖动滑块移动到图片中缺口位置与之重合的登录验证在很多网站或者APP都比较常见,因为它对真实用户体验友好,容易识别.同时也能拦截掉大部分初级爬虫. 作为一只python爬虫,如何正确地自动完成这个验证过程呢? 先来分析下,核心问题其实是要怎么样找到目标缺口的位置,一旦知道了位置,我们就可以借用selenium

  • Python+selenium破解拼图验证码的脚本

    目录 实现思路 核心代码 实现思路 很多网站都有拼图验证码 1.首先要了解拼图验证码的生成原理 2.制定破解计划,考虑其可能性和成功率. 3.编写脚本 很多网站的拼图验证码都是直接借助第三方插件,也就是一类一种解法. 笔者遇到的这种拼图验证码实际上是多个小碎片经过重新组合成的一张整体,首先要在网站上抓取这种小碎片图片并下载到本地 我们先捋一捋大体思路: 获取所有碎片图片----找出他们的排列顺序逻辑-----找出他们中含有颜色深的真正位置的那个小碎块的序号-----根据每块碎片的宽度和上下和这个

  • python神经网络Keras搭建RFBnet目标检测平台

    目录 什么是RFBnet目标检测算法 RFBnet实现思路 一.预测部分 1.主干网络介绍 2.从特征获取预测结果 3.预测结果的解码 4.在原图上进行绘制 二.训练部分 1.真实框的处理 2.利用处理完的真实框与对应图片的预测结果计算loss 训练自己的RFB模型 一.数据集的准备 二.数据集的处理 三.开始网络训练 四.训练结果预测 什么是RFBnet目标检测算法 RFBnet是SSD的一种加强版,主要是利用了膨胀卷积这一方法增大了感受野,相比于普通的ssd,RFBnet也是一种加强吧 RF

  • 如何使用PHP对网站验证码进行破解

    验证码的功能一般是防止使用程序恶意注册.暴力破解或批量发帖而设置的.所谓验证码,就是将一串随机产生的数字或符号,生成一幅图片,图片里加上一些干扰象素(防止OCR),由用户肉眼识别其中的验证码信息,输入表单提交网站验证,验证成功后才能使用某项功能.学习验证码的破解/识别技术,不仅可以知道验证码的原理,而且可以让你知道怎样才能防止验证码被破解. 最常见的验证码主要有以下几种: 1.四位数字,随机的一数字字符串,最原始的验证码,验证作用几乎为零. 2.随机数字图片验证码.图片上的字符比较中规中矩,有的

随机推荐