python实现图像降噪

本文实例为大家分享了python实现图像降噪的具体代码,供大家参考,具体内容如下

任务描述

背景

图像在数字化和传输等过程中会产生噪声,从而影响图像的质量,而图像降噪技术可以有效地减少图像中的噪声。如下图所示,左图是一幅包含噪声的图像(图中的黑点即为噪声),右图是降噪后的结果(黑点显著减少)。

中值滤波是一种常用的图像降噪方法,对于一幅带噪声的图像 1(设分辨率为 w×h),降噪方法如下:

1)将图像1转换成灰度图,仍称为图像1;
2)新建图像2,图像2为灰度图,分辨率与图像1相同;
3)对于图像 1 中坐标为 (x,y) 的像素 p,求 p 的中值 c,然后将图像 2 中 (x,y) 处的像素值设置成 c,其中,1≤x≤w−2、1≤y≤h−2;
4)保存图像 2,图像 2 即存放了降噪后的结果。

其中,第 3 步要计算 (x,y) 处像素 p 的中值 c,计算方法如下:

1)选取以 p 为中心的 3×3 图像区域,如上图所示,每个小方格代表一个像素,数字表示像素的灰度值,像素 p 的坐标为 (x,y),则选取的图像区域为黄色底纹区域;
2)对步骤 1 中选取的 9 个像素的颜色值进行升序排列,如上图所示例子排序后为:11、12、13、14、15、16、17、18、99;
3)在步骤 2 得到的排序结果中,排在最中间一个值即为中值 c,如上图所示例子中像素 p 的中值为 15。

任务

本关任务是补全程序,使其能进行图像降噪,说明如下:
1)排序操作可利用列表中的sort函数进行;
2)关于代码的相关说明见注释。

相关知识

略。

编程要求

在 Begin-End 区间补全代码,具体要求见上。

测试说明

测试集正确结果如下:

(1  , 1 ) -> 255
(72 , 42) -> 191
(120, 45) -> 127
(164, 49) -> 89
(235, 49) -> 38

你的图像与正确答案相同!

说明如下:

1)系统会调用你编写的median函数,并以“像素坐标 -> 中值”的格式打印结果,如测试集第 1 行的(1 , 1 ) -> 255表示:(1,1) 处像素的中值为255;
2)此外,系统会检查程序生成的图像文件,若正确则在测试集最后一行打印你的图像与正确答案相同!。

开始你的任务吧,祝你成功!

from PIL import Image

# 求图像img中(x,y)处像素的中值c
def median(img, x, y):
    ########## Begin ##########
    L = []
    xl = [x-1,x,x+1]
    yl = [y-1,y,y+1]
    for i in xl:
        for j in yl:
            gray = img.getpixel((i, j))  # 取出灰度值
            L.append(gray)
    L.sort()
    c = L[4]
    ########## End ##########
    return c

# 对图像文件1进行降噪,并将结果保存为图像文件2
# 图像文件1和2的路径分别为path1和path2
def denoise(path1, path2):
    img1 = Image.open(path1)  # 图像1
    img1 = img1.convert('L')  # 将图像1转换为灰度图
    w, h = img1.size
    img2 = Image.new('L', (w, h), 'white')  # 图像2
    for x in range(1, w - 1):
        for y in range(1, h - 1):
            c = median(img1, x, y)  # 求中值
            img2.putpixel((x, y), c)  # 将灰度设置为中值
    img2.save(path2)

path1 = 'step4.bmp'  # 带噪声的图像
path2 = 'step4_2.bmp'  # 降噪后的图像
denoise(path1, path2)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • python验证码识别教程之灰度处理、二值化、降噪与tesserocr识别

    前言 写爬虫有一个绕不过去的问题就是验证码,现在验证码分类大概有4种: 图像类 滑动类 点击类 语音类 今天先来看看图像类,这类验证码大多是数字.字母的组合,国内也有使用汉字的.在这个基础上增加噪点.干扰线.变形.重叠.不同字体颜色等方法来增加识别难度. 相应的,验证码识别大体可以分为下面几个步骤: 灰度处理 增加对比度(可选) 二值化 降噪 倾斜校正分割字符 建立训练库 识别 由于是实验性质的,文中用到的验证码均为程序生成而不是批量下载真实的网站验证码,这样做的好处就是可以有大量的知道明确结果

  • 使用python 对验证码图片进行降噪处理

    首先贴一张验证码上来做案例: 第一步先通过二值化处理把干扰线去掉: from PIL import Image # 二值化处理 def two_value(): for i in range(1,5): # 打开文件夹中的图片 image=Image.open('./Img/'+str(i)+'.jpg') # 灰度图 lim=image.convert('L') # 灰度阈值设为165,低于这个值的点全部填白色 threshold=165 table=[] for j in range(256

  • python对验证码降噪的实现示例代码

    前言: 最近写爬虫会经常遇到一些验证码识别的问题,现如今的验证码已经是五花八门,刚开始的验证码就是简单的对生成的验证码图片进行一些干扰,但是随着计算机视觉库的 发展壮大,可以轻松解决简单的验证码识别问题,于是一些变态 的验证码就出来了,什么滑动验证码,当然这个也是比较好解决的,用python的selenium库就可以破解一些滑动验证码.可是还出现了一些语音类,点击类的验证码.爬虫与反爬的较量确实越来越精彩了,也挺有趣的!最终促进的是整个行业技术的发展与进步. 今天分享一个可以解决简单验证码识别的

  • Python图片验证码降噪和8邻域降噪

    目录 Python图片验证码降噪 和8邻域降噪 一.简介 二.8邻域降噪 三.Pillow实现 四.OpenCV实现 Python图片验证码降噪 和8邻域降噪 一.简介 图片验证码识别的可以分为几个步骤,一般用 Pillow 库或 OpenCV 来实现: 1.灰度处理&二值化 2.降噪 3.字符分割 4.标准化 5.识别 所谓降噪就是把不需要的信息通通去除,比如背景,干扰线,干扰像素等等,只留下需要识别的字符,让图片变成2进制点阵,方便代入模型训练. 二.8邻域降噪 8邻域降噪 的前提是将图片灰

  • python自动化操作之动态验证码、滑动验证码的降噪和识别

    目录 前言 一.动态验证码 二.滑动验证码 三.验证码的降噪 四.验证码的识别 总结 前言 python对动态验证码.滑动验证码的降噪和识别,在各种自动化操作中,我们经常要遇到沿跳过验证码的操作,而对于验证码的降噪和识别,的确困然了很多的人.这里我们就详细讲解一下不同验证码的降噪和识别. 一.动态验证码 动态验证码是服务端生成的,点击一次,就会更换一次,这就会造成很多人在识别的时候,会发现验证码一直过期 这是因为,如果你是把图片下载下来,进行识别的话,其实在下载的这个请求中,其实相当于点击了一次

  • python实现图像降噪

    本文实例为大家分享了python实现图像降噪的具体代码,供大家参考,具体内容如下 任务描述 背景 图像在数字化和传输等过程中会产生噪声,从而影响图像的质量,而图像降噪技术可以有效地减少图像中的噪声.如下图所示,左图是一幅包含噪声的图像(图中的黑点即为噪声),右图是降噪后的结果(黑点显著减少). 中值滤波是一种常用的图像降噪方法,对于一幅带噪声的图像 1(设分辨率为 w×h),降噪方法如下: 1)将图像1转换成灰度图,仍称为图像1:2)新建图像2,图像2为灰度图,分辨率与图像1相同:3)对于图像

  • python Pillow图像降噪处理颜色处理

    目录 Pillow图像降噪处理 模糊处理 轮廓图 边缘检测 浮雕图 Pillow图像颜色处理 颜色命名 Pillow图像降噪处理 由于成像设备.传输媒介等因素的影响,图像总会或多或少的存在一些不必要的干扰信息,我们将这些干扰信息统称为“噪声” 如数字图像中常见的“椒盐噪声”,指的是图像会随机出现的一些白.黑色的像素点.图像噪声既影响了图像的质量,又妨碍人们的视觉观赏.因此,噪声处理是图像处理过程中必不可少的环节之一,我们把处理图像噪声的过程称为“图像降噪”. 随着数字图像技术的不断发展,图像降噪

  • python识别和降噪动态验证码与滑动验证码

    目录 一.动态验证码 二.滑动验证码 三.验证码的降噪 四.验证码的识别 〝 古人学问遗无力,少壮功夫老始成 〞 python对动态验证码.滑动验证码的降噪和识别,在各种自动化操作中,我们经常要遇到沿跳过验证码的操作,而对于验证码的降噪和识别,的确困然了很多的人.这里我们就详细讲解一下不同验证码的降噪和识别.如果这篇文章能给你带来一点帮助,希望各位小伙伴们多多支持我们. 一.动态验证码 动态验证码是服务端生成的,点击一次,就会更换一次,这就会造成很多人在识别的时候,会发现验证码一直过期 这是因为

  • Python实现图像几何变换

    本文实例讲述了Python实现图像几何变换的方法.分享给大家供大家参考.具体实现方法如下: import Image try: im=Image.open('test.jpg') #out = im.resize((128, 128)) #改变大小 #out = im.rotate(45) #45°旋转 #out = im.transpose(Image.FLIP_LEFT_RIGHT) #水平翻转 #out = im.transpose(Image.FLIP_TOP_BOTTOM) #垂直翻转

  • python opencv 图像尺寸变换方法

    利用Python OpenCV中的 cv.Resize(源,目标,变换方法)就可以实现变换为想要的尺寸了 源文件:就不用说了 目标:你可以对图像进行倍数的放大和缩小 也可以直接的输入尺寸大小 变换的方法: CV_INTER_NN - 最近邻插值, CV_INTER_LINEAR - 双线性插值 (缺省使用) CV_INTER_AREA - 使用象素关系重采样.当图像缩小时候,该方法可以避免波纹出现.当图像放大时,类似于 CV_INTER_NN 方法.. CV_INTER_CUBIC - 立方插值

  • 使用Python实现图像标记点的坐标输出功能

    Sometimes we have need to interact  with an application,for example by marking points in an image,or you need to annotation some training data.PyLab comes with a simple function ginput() the let's you do just that .Here's a short example. from PIL im

  • 详解Python计算机视觉 图像扭曲(仿射扭曲)

    对图像块应用仿射变换,我们将其称为图像扭曲(或者仿射扭曲).该操作不仅经常应用在计算机图形学中,而且经常出现在计算机视觉算法中. 一.仿射变换原理 仿射变换能够保持图像的"平直性",包括旋转,缩放,平移,错切操作.对于三个点,仿射变换可以将一副图像进行扭曲,使得三对对应点对可以完美地匹配上.仿射变换具有6个自由度,有三个对应点对可以给出6个约束条件(对于这三个对应点对,x和y坐标必须都要匹配) 仿射变换是在几何上定义为两个向量空间之间的一个仿射变换或者仿射映射.由一个非奇异的线性变换(

  • python提取图像的名字*.jpg到txt文本的方法

    如下所示: <span style="font-size:18px;"># -*- coding:utf-8 -*- import sys sys.path.append('E:\\Anaconda\\libs') import os #os:操作系统相关的信息模块 import random #导入随机函数 #存放原始图片地址 data_base_dir = "C:\\Users\\Administrator.MICROSO-1HCAN56\\Desktop\\

  • Python 判断图像是否读取成功的方法

    大批量处理数据时,若因个别图像错误导致代码中断,从头再来比较浪费时间 对未成功读入的图像跳过(读图 import cv2) for i in range(1,1000): image = cv2.imdecode(np.fromfile('xxx.jpg', dtype=np.uint8), -1) try: image.shape except: print('fail to read xxx.jpg') continue ...... 若该图像可能不存在,即没有该图像的文件名,也可用try判

随机推荐