python查找与排序算法详解(示图+代码)

目录
  • 查找
    • 二分查找
    • 线性查找
  • 排序
    • 插入排序
    • 快速排序
    • 选择排序
    • 冒泡排序
    • 归并排序
    • 堆排序
    • 计数排序
    • 希尔排序
    • 拓扑排序
  • 总结

查找

二分查找

二分搜索是一种在有序数组中查找某一特定元素的搜索算法。搜索过程从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜索过程结束;如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间元素开始比较。如果在某一步骤数组为空,则代表找不到。这种搜索算法每一次比较都使搜索范围缩小一半。

# 返回 x 在 arr 中的索引,如果不存在返回 -1
def binarySearch (arr, l, r, x):
    # 基本判断
    if r >= l:
        mid = int(l + (r - l)/2)
        # 元素整好的中间位置
        if arr[mid] == x:
            return mid
        # 元素小于中间位置的元素,只需要再比较左边的元素
        elif arr[mid] > x:
            return binarySearch(arr, l, mid-1, x)
        # 元素大于中间位置的元素,只需要再比较右边的元素
        else:
            return binarySearch(arr, mid+1, r, x)
    else:
        # 不存在
        return -1

# 测试数组
arr = [ 2, 3, 4, 10, 40]
x = int(input('请输入元素:'))
# 函数调用
result = binarySearch(arr, 0, len(arr)-1, x)

if result != -1:
    print("元素在数组中的索引为 %d" % result)
else:
    print("元素不在数组中")

运行结果: 

请输入元素:4
元素在数组中的索引为 2

请输入元素:5
元素不在数组中

线性查找

线性查找:指按一定的顺序检查数组中每一个元素,直到找到所要寻找的特定值为止。

def search(arr, n, x):
    for i in range (0, n):
        if (arr[i] == x):
            return i
    return -1

# 在数组 arr 中查找字符 D
arr = [ 'A', 'B', 'C', 'D', 'E' ]
x = input("请输入要查找的元素:")
n = len(arr)
result = search(arr, n, x)
if(result == -1):
    print("元素不在数组中")
else:
    print("元素在数组中的索引为", result)

 运行结果: 

请输入要查找的元素:A
元素在数组中的索引为 0

请输入要查找的元素:a
元素不在数组中

排序

插入排序

插入排序(Insertion Sort):是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。

def insertionSort(arr):
    for i in range(1, len(arr)):
        key = arr[i]
        j = i-1
        while j >= 0 and key < arr[j]:
                arr[j+1] = arr[j]
                j -= 1
        arr[j+1] = key

arr = [12, 11, 13, 5, 6, 7, 9, 9, 17]
insertionSort(arr)
print("排序后的数组:")
print(arr)

运行结果:  

排序后的数组:
[5, 6, 7, 9, 9, 11, 12, 13, 17]

当然也可以这样写,更简洁

list1 = [12, 11, 13, 5, 6, 7, 9, 9, 17]
for i in range(len(list1)-1, 0, -1):
    for j in range(0, i):
        if list1[i] < list1[j]:
            list1[i], list1[j] = list1[j], list1[i]
print(list1)

快速排序

快速排序;使用分治法(Divide and conquer)策略来把一个序列(list)分为较小和较大的2个子序列,然后递归地排序两个子序列。

步骤为:

  • 挑选基准值:从数列中挑出一个元素,称为"基准"(pivot);
  • 分割:重新排序数列,所有比基准值小的元素摆放在基准前面,所有比基准值大的元素摆在基准后面(与基准值相等的数可以到任何一边)。在这个分割结束之后,对基准值的排序就已经完成;
  • 递归排序子序列:递归地将小于基准值元素的子序列和大于基准值元素的子序列排序。

递归到最底部的判断条件是数列的大小是零或一,此时该数列显然已经有序。

选取基准值有数种具体方法,此选取方法对排序的时间性能有决定性影响。

def partition(arr, low, high):
    i = (low-1)         # 最小元素索引
    pivot = arr[high]

    for j in range(low, high):
        # 当前元素小于或等于 pivot
        if arr[j] <= pivot:
            i = i+1
            arr[i], arr[j] = arr[j], arr[i]

    arr[i+1], arr[high] = arr[high], arr[i+1]
    return (i+1)

# arr[] --> 排序数组
# low  --> 起始索引
# high  --> 结束索引

# 快速排序函数
def quickSort(arr, low, high):
    if low < high:
        pi = partition(arr, low, high)
        quickSort(arr, low, pi-1)
        quickSort(arr, pi+1, high)
    return arr

arr = [10, 7, 8, 9, 1, 5]
n = len(arr)

print("排序后的数组:")
print(quickSort(arr, 0, n-1))

 运行结果:  

排序后的数组:
[1, 5, 7, 8, 9, 10]

选择排序

选择排序(Selection sort):是一种简单直观的排序算法。它的工作原理如下。

首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。

A = [64, 25, 12, 22, 11]
for i in range(len(A)):
    min_idx = i
    for j in range(i+1, len(A)):
        if A[min_idx] > A[j]:
            min_idx = j

    A[i], A[min_idx] = A[min_idx], A[i]

print("排序后的数组:")
print(A)

运行结果:  

排序后的数组:
[11, 12, 22, 25, 64]

冒泡排序

冒泡排序(Bubble Sort):也是一种简单直观的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢"浮"到数列的顶端。

def bubbleSort(arr):
    n = len(arr)
    # 遍历所有数组元素
    for i in range(n):
        # Last i elements are already in place
        for j in range(0, n-i-1):

            if arr[j] > arr[j+1]:
                arr[j], arr[j+1] = arr[j+1], arr[j]
    return arr

arr = [64, 34, 25, 12, 22, 11, 90]

print("排序后的数组:")
print(bubbleSort(arr))

运行结果:  

排序后的数组:
[11, 12, 22, 25, 34, 64, 90]

归并排序

归并排序(Merge sort,或mergesort):,是创建在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。

分治法:

  • 分割:递归地把当前序列平均分割成两半。
  • 集成:在保持元素顺序的同时将上一步得到的子序列集成到一起(归并)。

def merge(arr, l, m, r):
    n1 = m - l + 1
    n2 = r - m

    # 创建临时数组
    L = [0] * (n1)
    R = [0] * (n2)

    # 拷贝数据到临时数组 arrays L[] 和 R[]
    for i in range(0, n1):
        L[i] = arr[l + i]

    for j in range(0, n2):
        R[j] = arr[m + 1 + j]

    # 归并临时数组到 arr[l..r]
    i = 0     # 初始化第一个子数组的索引
    j = 0     # 初始化第二个子数组的索引
    k = l     # 初始归并子数组的索引

    while i < n1 and j < n2:
        if L[i] <= R[j]:
            arr[k] = L[i]
            i += 1
        else:
            arr[k] = R[j]
            j += 1
        k += 1

    # 拷贝 L[] 的保留元素
    while i < n1:
        arr[k] = L[i]
        i += 1
        k += 1

    # 拷贝 R[] 的保留元素
    while j < n2:
        arr[k] = R[j]
        j += 1
        k += 1

def mergeSort(arr, l, r):
    if l < r:
        m = int((l+(r-1))/2)
        mergeSort(arr, l, m)
        mergeSort(arr, m+1, r)
        merge(arr, l, m, r)
    return arr

print ("给定的数组")
arr = [12, 11, 13, 5, 6, 7, 13]
print(arr)
n = len(arr)
mergeSort(arr, 0, n-1)
print("排序后的数组")
print(arr)

运行结果:  

给定的数组
[12, 11, 13, 5, 6, 7, 13]
排序后的数组
[5, 6, 7, 11, 12, 13, 13]

堆排序

堆排序(Heapsort):是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。堆排序可以说是一种利用堆的概念来排序的选择排序。

def heapify(arr, n, i):
    largest = i
    l = 2 * i + 1     # left = 2*i + 1
    r = 2 * i + 2     # right = 2*i + 2
    if l < n and arr[i] < arr[l]:
        largest = l
    if r < n and arr[largest] < arr[r]:
        largest = r
    if largest != i:
        arr[i], arr[largest] = arr[largest], arr[i]  # 交换
def heapSort(arr):
    n = len(arr)
    # Build a maxheap.
    for i in range(n, -1, -1):
        heapify(arr, n, i)
    # 一个个交换元素
    for i in range(n-1, 0, -1):
        arr[i], arr[0] = arr[0], arr[i]   # 交换
        heapify(arr, i, 0)
    return arr
arr = [12, 11, 13, 5, 6, 7, 13, 18]
heapSort(arr)
print("排序后的数组")
print(heapSort(arr))

运行结果:  

排序后的数组
[5, 6, 7, 12, 11, 13, 13, 18]

计数排序

计数排序:的核心在于将输入的数据值转化为键存储在额外开辟的数组空间中。作为一种线性时间复杂度的排序,计数排序要求输入的数据必须是有确定范围的整数。

def countSort(arr):
    output = [0 for i in range(256)]
    count = [0 for i in range(256)]
    ans = ["" for _ in arr]
    for i in arr:
        count[ord(i)] += 1
    for i in range(256):
        count[i] += count[i-1]
    for i in range(len(arr)):
        output[count[ord(arr[i])]-1] = arr[i]
        count[ord(arr[i])] -= 1
    for i in range(len(arr)):
        ans[i] = output[i]
    return ans
arr = "wwwnowcodercom"
ans = countSort(arr)
print("字符数组排序 %s" %("".join(ans)))

运行结果:  

字符数组排序 ccdemnooorwwww

希尔排序

希尔排序:也称递减增量排序算法,是插入排序的一种更高效的改进版本。但希尔排序是非稳定排序算法。

希尔排序的基本思想是:先将整个待排序的记录序列分割成为若干子序列分别进行直接插入排序,待整个序列中的记录"基本有序"时,再对全体记录进行依次直接插入排序。

def shellSort(arr):
    n = len(arr)
    gap = int(n/2)

    while gap > 0:
        for i in range(gap, n):
            temp = arr[i]
            j = i
            while j >= gap and arr[j-gap] > temp:
                arr[j] = arr[j-gap]
                j -= gap
            arr[j] = temp
        gap = int(gap/2)
    return arr

arr = [12, 34, 54, 2, 3, 2, 5]

print("排序前:")
print(arr)
print("排序后:")
print(shellSort(arr))

运行结果:  

排序前:
[12, 34, 54, 2, 3, 2, 5]
排序后:
[2, 2, 3, 5, 12, 34, 54]

拓扑排序

对一个有向无环图(Directed Acyclic Graph简称DAG)G进行拓扑排序,是将G中所有顶点排成一个线性序列,使得图中任意一对顶点u和v,若边(u,v)∈E(G),则u在线性序列中出现在v之前。通常,这样的线性序列称为满足拓扑次序(Topological Order)的序列,简称拓扑序列。简单的说,由某个集合上的一个偏序得到该集合上的一个全序,这个操作称之为拓扑排序。

在图论中,由一个有向无环图的顶点组成的序列,当且仅当满足下列条件时,称为该图的一个拓扑排序(英语:Topological sorting):

每个顶点出现且只出现一次;若A在序列中排在B的前面,则在图中不存在从B到A的路径。

from collections import defaultdict
class Graph:
    def __init__(self, vertices):
        self.graph = defaultdict(list)
        self.V = vertices
    def addEdge(self, u, v):
        self.graph[u].append(v)
    def topologicalSortUtil(self, v, visited, stack):

        visited[v] = True

        for i in self.graph[v]:
            if visited[i] == False:
                self.topologicalSortUtil(i, visited, stack)
        stack.insert(0,v)
    def topologicalSort(self):
        visited = [False]*self.V
        stack = []
        for i in range(self.V):
            if visited[i] == False:
                self.topologicalSortUtil(i, visited, stack)
        print(stack)
g= Graph(6)
g.addEdge(5, 2)
g.addEdge(5, 0)
g.addEdge(4, 0)
g.addEdge(4, 1)
g.addEdge(2, 3)
g.addEdge(3, 1)
print("拓扑排序结果:")
g.topologicalSort()

运行结果:  

拓扑排序结果:
[5, 4, 2, 3, 1, 0]

总结

到此这篇关于python查找与排序算法详解(示图+代码)的文章就介绍到这了,更多相关python算法内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • python实现折半查找和归并排序算法

    今天依旧是学算法,前几天在搞bbs项目,界面也很丑,评论功能好像也有BUG.现在不搞了,得学下算法和数据结构,笔试过不了,连面试的机会都没有-- 今天学了折半查找算法,折半查找是蛮简单的,但是归并排序我就挺懵比,看教材C语言写的归并排序看不懂,后来参考了别人的博客,终于搞懂了. 折半查找 先看下课本对于 折半查找的讲解.注意了,折半查找是对于有序序列而言的.每次折半,则查找区间大约缩小一半.low,high分别为查找区间的第一个下标与最后一个下标.出现low>high时,说明目标关键字在整个有序

  • python 二分查找和快速排序实例详解

    思想简单,细节颇多:本以为很简单的两个小程序,写起来发现bug频出,留此纪念. #usr/bin/env python def binary_search(lst,t): low=0 height=len(lst)-1 quicksort(lst,0,height) print lst while low<=height: mid = (low+height)/2 if lst[mid] == t: return lst[mid] elif lst[mid]>t: height=mid-1 e

  • Python数据结构之二叉排序树的定义、查找、插入、构造、删除

    前言   本篇章主要介绍二叉树的应用之一------二叉排序树,包括二叉排序树的定义.查找.插入.构造.删除及查找效率分析. 1. 二叉排序树的定义   二叉排序树 ( B i n a r y (Binary (Binary S o r t Sort Sort T r e e , B S T ) Tree,BST) Tree,BST),也称为二叉查找树,具有以下性质:   (1) 若左子树非空,则左子树上所有结点的值均小于根结点的值:   (2) 若右子树非空,则右子树上所有结点的值均大于根结点

  • python查找与排序算法详解(示图+代码)

    目录 查找 二分查找 线性查找 排序 插入排序 快速排序 选择排序 冒泡排序 归并排序 堆排序 计数排序 希尔排序 拓扑排序 总结 查找 二分查找 二分搜索是一种在有序数组中查找某一特定元素的搜索算法.搜索过程从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜索过程结束:如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间元素开始比较.如果在某一步骤数组为空,则代表找不到.这种搜索算法每一次比较都使搜索范围缩小一半. # 返回 x 在 ar

  • 可能是你看过最全的十大排序算法详解(完整版代码)

    目录 前言 交集排序 冒泡 简单 快速排序 插入排序 直接插入排序 希尔排序 选择排序 简单选择排序 堆排序 归并排序 二路 多路 非比较类 计数排序 桶排序 基数排序 最后 前言 兄弟们,应上篇数据结构的各位要求,今天我开始工作了,开始肝算法,剑指offer还在路上,我真想开车去接它,奈何码神没有驾照的开车,算了,弄排序算法吧,有点长,耐心看啊,原创不易,你们懂的,先上一张图 可以看出排序算法,还是比较多的,算了,不多说了,你我肝完就是出门自带4年实习经验的! 交集排序 冒泡 冒泡我一般也将它

  • C语言 选择排序算法详解及实现代码

    选择排序是排序算法的一种,这里以从小到大排序为例进行讲解. 基本思想及举例说明 选择排序(从小到大)的基本思想是,首先,选出最小的数,放在第一个位置:然后,选出第二小的数,放在第二个位置:以此类推,直到所有的数从小到大排序. 在实现上,我们通常是先确定第i小的数所在的位置,然后,将其与第i个数进行交换. 下面,以对 3  2  4  1 进行选择排序说明排序过程,使用min_index 记录当前最小的数所在的位置. 第1轮 排序过程 (寻找第1小的数所在的位置) 3  2  4  1(最初, m

  • C语言 奇偶排序算法详解及实例代码

    C语言奇偶排序算法 奇偶排序,或奇偶换位排序,或砖排序,是一种相对简单的排序算法,最初发明用于有本地互连的并行计算.这是与冒泡排序特点类似的一种比较排序.该算法中,通过比较数组中相邻的(奇-偶)位置数字对,如果该奇偶对是错误的顺序(第一个大于第二个),则交换.下一步重复该操作,但针对所有的(偶-奇)位置数字对.如此交替进行下去. 使用奇偶排序法对一列随机数字进行排序的过程 处理器数组的排序 在并行计算排序中,每个处理器对应处理一个值,并仅有与左右邻居的本地互连.所有处理器可同时与邻居进行比较.交

  • python里反向传播算法详解

    反向传播的目的是计算成本函数C对网络中任意w或b的偏导数.一旦我们有了这些偏导数,我们将通过一些常数 α的乘积和该数量相对于成本函数的偏导数来更新网络中的权重和偏差.这是流行的梯度下降算法.而偏导数给出了最大上升的方向.因此,关于反向传播算法,我们继续查看下文. 我们向相反的方向迈出了一小步--最大下降的方向,也就是将我们带到成本函数的局部最小值的方向. 图示演示: 反向传播算法中Sigmoid函数代码演示: # 实现 sigmoid 函数 return 1 / (1 + np.exp(-x))

  • Python实现聚类K-means算法详解

    目录 手动实现 sklearn库中的KMeans K-means(K均值)算法是最简单的一种聚类算法,它期望最小化平方误差 注:为避免运行时间过长,通常设置一个最大运行轮数或最小调整幅度阈值,若到达最大轮数或调整幅度小于阈值,则停止运行. 下面我们用python来实现一下K-means算法:我们先尝试手动实现这个算法,再用sklearn库中的KMeans类来实现.数据我们采用<机器学习>的西瓜数据(P202表9.1): # 下面的内容保存在 melons.txt 中 # 第一列为西瓜的密度:第

  • C语言直接选择排序算法详解

    目录 1. 直接选择排序介绍 1.1 定义 1.2 基本原理 1.3 时间复杂度 1.4 空间复杂度 1.5 优缺点 2. 代码实现 2.1 代码设计 2.2 代码实现 1. 直接选择排序介绍 1.1 定义 直接选择排序是指每次都从剩余数据中选出最大或者最小的,将其排在已经排好的有序表后面. 1.2 基本原理 每次从无序表中选择最小(或最大)元素,将其作为首元素,知道所有元素排完为止.将一个有n个元素的数组从小到大排序,第一次从R[0] ~ R[n-1]中选取最小值,与R[0]交换,第二次从R[

  • C语言实现扫雷小游戏完整算法详解(附完整代码)

    目录 前言 1.算法基本思路 2.算法详解 1.初始化数组与打印数组 2.设置雷 3.排查与标记 4.CountMine函数计算周围雷的个数 5.ExpandMine函数递归展开周围所有安全区域 3.完整代码!!! 总结 前言 扫雷是一个常见小游戏,那么如何用C语言实现扫雷呢?学习了二维数组之后,我们可将扫雷的网格区域存储为二维数组,从而使用C语言实现扫雷. 1.算法基本思路 首先,用一个二维数组存储雷的分布,雷的分布在游戏期间从始至终不变,下文称为mine数组.用另一个二维数组存储排查出的雷的

  • python如何实现常用的五种排序算法详解

    一.冒泡排序 原理: 比较相邻的元素.如果第一个比第二个大就交换他们两个 每一对相邻元素做同样的工作,直到结尾最后一对 每个元素都重复以上步骤,除了最后一个 第一步: 将乱序中的最大值找出,逐一移到序列最后的位置 alist = [3, 5, 9, 2, 1, 7, 8, 6, 4] def bubble_sort(alist): # 找最大值的方式是通过对列表中的元素进行两两比较,值大的元素逐步向后移动 # 序列中有n个元素,两两比较的话,需要比较n-1次 for i in range(len

  • Python实现的快速排序算法详解

    本文实例讲述了Python实现的快速排序算法.分享给大家供大家参考,具体如下: 快速排序基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列. 如序列[6,8,1,4,3,9],选择6作为基准数.从右向左扫描,寻找比基准数小的数字为3,交换6和3的位置,[3,8,1,4,6,9],接着从左向右扫描,寻找比基准数大的数字为8,交换6和8的位置

随机推荐