Pandas实现DataFrame的简单运算、统计与排序

目录
  • 一.运算
  • 二.统计
  • 三.排序

在前面的章节中,我们讨论了Series的计算方法与Pandas的自动对齐功能。不光是Series,DataFrame也是支持运算的,而且还是经常被使用的功能之一。

由于DataFrame的数据结构中包含了多行、多列,所以DataFrame的计算与统计可以是用行数据或者用列数据。为了更方便我们的使用,Pandas为我们提供了常用的计算与统计方法:

操作 方法 操作 方法
求和 sum 最大值 max
求均值 mean 最小值 min
求方差 var 标准差 std
中位数 median 众数 mode
分位数 quantile    

一.运算

接上文的例子,我们已经有了N个学生的数学、语文、英语的成绩表,现在,我们要算出每个学生的总成绩,那么我们就可以用以下的方法:

'''
行的求和以下演示两种方法:
方法1:先把待求和的列数据删选出来(剔除掉name列),然后使用sum函数求和
方法2:把待求和的列一个一个选出来然后使用运算符求和
两种方法最后的结果为像原有的DataFrame中新增一列,数据为每行数据的求和
'''
df['sum'] = df[['chinese', 'math', 'english']].sum(1)	#方法1

df['sum'] = df['chinese'] + df['math'] + df['english']	#方法2

Output:
        name  chinese  english  math  sum
0   XiaoMing       99      100    80  279
1      LiHua      102       79    92  273
2  HanMeiNei      111      130   104  345

在sum方法中我们传入了参数1,代表的是我们使用的轴(axis)为行(对行数据进行求和),如果想要计算出每列的求和我们只用传入0即可(sum函数默认参数为0,所以也可不传):

df[['chinese', 'math', 'english']].sum(0)

Output:
chinese    312
math       276
english    309
dtype: int64

现在有了总成绩,那么数学老师或者语文老师就会关心本班学生的数据平均分是多少,同样的,我们可以非常快速的计算出来:

df['math'].mean()		#方法一:直接使用Pandas提供的mean求均值方法

df['math'].sum() / df.shape[0]	#方法二:使用求和方法算出总和后除以总人数(行数)

Output:
92.0

本中使用了DataFrame的shape方法,这个方法是用来显示DataFrame的行数和列数的,行数为0,列数1。需要注意的是输出的列数值是不含索引列的。

上述只计算了数学的平均分,感兴趣的小伙伴可以自行基础出英语和语文的平均分哦~

二.统计

这个时候数学老师又有新的需求了,他想查看本班学生数学成绩的最高分、最低分、中位数等统计数据,那么根本不慌,Pandas统统可以帮我们搞定:

df['math'].min()  # math列的最小值
Output:80

df['math'].max()  # math列的最大值
Output:104

df['math'].quantile([0.3, 0.4, 0.5])  # math列的30%、40%、50%分位数
Output:
0.3    87.2
0.4    89.6
0.5    92.0
Name: math, dtype: float64

df['math'].std() # math列的标准差
Output:12

df['math'].var() # math列的方差
Output:144

df['math'].mean() # math列的平均数
Output:92

df['math'].median() # math列的中位数
Output:92

df['math'].mode() # math列的众数,返回一个Series对象(有可能出现并列的情况,例子中众数为1,所以都返回)
Output:
0     80
1     92
2    104
dtype: int64

我们也可以使用DataFrame的describe方法对DataFrame查看基本的统计情况:

df.describe()

Outprint:
          chinese     english   math         sum
count    3.000000    3.000000    3.0    3.000000
mean   104.000000  103.000000   92.0  299.000000
std      6.244998   25.632011   12.0   39.949969
min     99.000000   79.000000   80.0  273.000000
25%    100.500000   89.500000   86.0  276.000000
50%    102.000000  100.000000   92.0  279.000000
75%    106.500000  115.000000   98.0  312.000000
max    111.000000  130.000000  104.0  345.000000

三.排序

一般来讲我们的成绩表都是按照总分从高到低进行排序:

df = df.sort_values(by='sum', ascending=False)

Output:
        name  chinese  english  math  sum
2  HanMeiNei      111      130   104  345
0   XiaoMing       99      100    80  279
1      LiHua      102       79    92  273

可以看到我们使用了sort_values方法对DataFrame进行排序,同时by参数传入‘sum’指定按照‘sum’字段进行排序,ascending用来设置是降序(False)还是升序(True,默认值)排序。使用sort_values排序后默认会返回一个新的DataFrame对象,也就是说并不会影响原有的DataFrame对象,所以例子中我们才会把排序后的对象赋值给原有的DataFrame对象,如果不想排序后创建新的对象也是可以的,只需要传入inplace=True即可(在原有的DataFrame基础上修改):

df.sort_values(by='sum', ascending=False, inplace=True)
print(df)

Output:
        name  chinese  english  math  sum
2  HanMeiNei      111      130   104  345
0   XiaoMing       99      100    80  279
1      LiHua      102       79    92  273

细心的小伙伴可能会发现当我们进行排序后,如果DataFrame中的行数据有调整的话,其行的索引值是不会更改的,上述例子中因为我们用了默认的递增数列索引,所以排序后看起来并不是很友好,不过不用担心,我们还是可以重置索引值的:

df = df.sort_values(by='sum', ascending=False).reset_index()

Output:
   index       name  chinese  english  math  sum
0      2  HanMeiNei      111      130   104  345
1      0   XiaoMing       99      100    80  279
2      1      LiHua      102       79    92  273

使用reset_index重设索引后我们的DataFrame对象的索引列确实被重置成了递增的序列,同时也多了列名为index的一列数据。当然我们可以传入drop=True将原有的索引列不插入到新的DataFrame中:

df = df.sort_values(by='sum', ascending=False).reset_index(drop=True)

        name  chinese  english  math  sum
0  HanMeiNei      111      130   104  345
1   XiaoMing       99      100    80  279
2      LiHua      102       79    92  273

为了更直观的展示排名情况,我们可以索引值+1这样就展示出了学生的排名情况:

df.index += 1

        name  chinese  english  math  sum
1  HanMeiNei      111      130   104  345
2   XiaoMing       99      100    80  279
3      LiHua      102       79    92  273

到此这篇关于Pandas实现DataFrame的简单运算、统计与排序的文章就介绍到这了,更多相关Pandas DataFrame运算统计与排序内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • pandas 对series和dataframe进行排序的实例

    本问主要写根据索引或者值对series和dataframe进行排序的实例讲解 代码: #coding=utf-8 import pandas as pd import numpy as np #以下实现排序功能. series=pd.Series([3,4,1,6],index=['b','a','d','c']) frame=pd.DataFrame([[2,4,1,5],[3,1,4,5],[5,1,4,2]],columns=['b','a','d','c'],index=['one','

  • Pandas 对Dataframe结构排序的实现方法

    Dataframe结构放在numpy来看应该是二维矩阵的形式,每一列是一个特征,上面会有个列标题,每一行是一个样本. 对Dataframe结构的某一列进行排序方法如下: # 对df表中的user_id这一列进行排序,默认是从小到大排 df = df.sort_index(by='user_id') 对多列进行排序方法如下: # 对user_id,sku_id这两列进行排序 df = df.sort_index(by=['user_id', 'sku_id']) 以上这篇Pandas 对Dataf

  • pandas DataFrame运算的实现

    1 算术运算 add(other) 比如进行数学运算加上具体的一个数字 data['open'].add(1) 2018-02-27 24.53 2018-02-26 23.80 2018-02-23 23.88 2018-02-22 23.25 2018-02-14 22.49 sub(other) 2 逻辑运算 2.1 逻辑运算符号 例如筛选data["open"] > 23的日期数据 data["open"] > 23返回逻辑结果 data[&qu

  • Pandas对DataFrame单列/多列进行运算(map, apply, transform, agg)

    1.单列运算 在Pandas中,DataFrame的一列就是一个Series, 可以通过map来对一列进行操作: df['col2'] = df['col1'].map(lambda x: x**2) 其中lambda函数中的x代表当前元素.可以使用另外的函数来代替lambda函数,例如: define square(x): return (x ** 2) df['col2'] = df['col1'].map(square) 2.多列运算 apply()会将待处理的对象拆分成多个片段,然后对各

  • Pandas实现DataFrame的简单运算、统计与排序

    目录 一.运算 二.统计 三.排序 在前面的章节中,我们讨论了Series的计算方法与Pandas的自动对齐功能.不光是Series,DataFrame也是支持运算的,而且还是经常被使用的功能之一. 由于DataFrame的数据结构中包含了多行.多列,所以DataFrame的计算与统计可以是用行数据或者用列数据.为了更方便我们的使用,Pandas为我们提供了常用的计算与统计方法: 操作 方法 操作 方法 求和 sum 最大值 max 求均值 mean 最小值 min 求方差 var 标准差 st

  • python中pandas.DataFrame的简单操作方法(创建、索引、增添与删除)

    前言 最近在网上搜了许多关于pandas.DataFrame的操作说明,都是一些基础的操作,但是这些操作组合起来还是比较费时间去正确操作DataFrame,花了我挺长时间去调整BUG的.我在这里做一些总结,方便你我他.感兴趣的朋友们一起来看看吧. 一.创建DataFrame的简单操作: 1.根据字典创造: In [1]: import pandas as pd In [3]: aa={'one':[1,2,3],'two':[2,3,4],'three':[3,4,5]} In [4]: bb=

  • python pandas中DataFrame类型数据操作函数的方法

    python数据分析工具pandas中DataFrame和Series作为主要的数据结构. 本文主要是介绍如何对DataFrame数据进行操作并结合一个实例测试操作函数. 1)查看DataFrame数据及属性 df_obj = DataFrame() #创建DataFrame对象 df_obj.dtypes #查看各行的数据格式 df_obj['列名'].astype(int)#转换某列的数据类型 df_obj.head() #查看前几行的数据,默认前5行 df_obj.tail() #查看后几

  • 对pandas的dataframe绘图并保存的实现方法

    对dataframe绘图并保存: ax = df.plot() fig = ax.get_figure() fig.savefig('fig.png') 可以制定列,对该列各取值作统计: label_dis = df.label.value_counts() ax = label_dis.plot(title='label distribution', kind='bar', figsize=(18, 12)) fig = ax.get_figure() fig.savefig('label_d

  • pandas修改DataFrame列名的方法

    在做数据挖掘的时候,想改一个DataFrame的column名称,所以就查了一下,总结如下: 数据如下: >>>import pandas as pd >>>a = pd.DataFrame({'A':[1,2,3], 'B':[4,5,6], 'C':[7,8,9]}) >>> a A B C 0 1 4 7 1 2 5 8 2 3 6 9 方法一:暴力方法 >>>a.columns = ['a','b','c'] >>

  • 将字典转换为DataFrame并进行频次统计的方法

    首先将一个字典转化为DataFrame,然后以DataFrame中的列进行频次统计. 代码如下: import pandas as pd a={'one':['A','A','B','C','C','A','B','B','A','A'], 'tao':['B','B','C','C','A','A','C','B','C','A'], 'three':['C','B','A','A','B','B','B','A','C','D']} b=pd.DataFrame(a) b.describe(

  • 从列表或字典创建Pandas的DataFrame对象的方法

    介绍 每当我使用pandas进行分析时,我的第一个目标是使用众多可用选项中的一个将数据导入Pandas的DataFrame . 对于绝大多数情况下,我使用的 read_excel , read_csv 或 read_sql . 但是,有些情况下我只需要几行数据或包含这些数据里的一些计算. 在这些情况下,了解如何从标准python列表或字典创建DataFrames会很有帮助. 基本过程并不困难,但因为有几种不同的选择,所以有助于理解每种方法的工作原理. 我永远记不住我是否应该使用 from_dic

  • Python使用pandas对数据进行差分运算的方法

    如下所示: >>> import pandas as pd >>> import numpy as np # 生成模拟数据 >>> df = pd.DataFrame({'a':np.random.randint(1, 100, 10),\      'b':np.random.randint(1, 100, 10)},\     index=map(str, range(10))) >>> df     a    b 0  21 

  • Python中pandas模块DataFrame创建方法示例

    本文实例讲述了Python中pandas模块DataFrame创建方法.分享给大家供大家参考,具体如下: DataFrame创建 1. 通过列表创建DataFrame 2. 通过字典创建DataFrame 3. 通过Numpy数组创建DataFrame DataFrame这种列表式的数据结构和Excel工作表非常类似,其设计初衷是讲Series的使用场景由一维扩展到多维. DataFrame由按一定顺序的多列数据组成,各列的数据类型可以有所不同(数值.字符串.布尔值). Series对象的Ind

随机推荐