人工智能—Python实现线性回归

1、概述

(1)人工智能学习

(2)机器学习

(3)有监督学习

(4)线性回归

2、线性回归

(1)实现步骤

  • 根据随机初始化的 w x b 和 y 来计算 loss
  • 根据当前的 w x b 和 y 的值来计算梯度
  • 更新梯度,循环将新的 w′ 和 b′ 复赋给 w 和 b ,最终得到一个最优的 w′ 和 b′ 作为方程最终的

(2)数学表达式

3、代码实现(Python)

(1)机器学习库(sklearn.linear_model)

代码:

from sklearn import linear_model
from sklearn.linear_model import LinearRegression
import matplotlib.pyplot as plt#用于作图
from pylab import *
mpl.rcParams['font.sans-serif'] = ['SimHei']
mpl.rcParams['axes.unicode_minus'] = False
import numpy as np#用于创建向量
 
 
reg=linear_model.LinearRegression(fit_intercept=True,normalize=False)
x=[[32.50235],[53.4268],[61.53036],[47.47564],[59.81321],[55.14219],[52.14219],[39.29957],
 [48.10504],[52.55001],[45.41873],[54.35163],[44.16405],[58.16847],[56.72721]]
y=[31.70701,68.7776,62.56238,71.54663,87.23093,78.21152,79.64197,59.17149,75.33124,71.30088,55.16568,82.47885,62.00892
,75.39287,81.43619]
reg.fit(x,y)
k=reg.coef_#获取斜率w1,w2,w3,...,wn
b=reg.intercept_#获取截距w0
x0=np.arange(30,60,0.2)
y0=k*x0+b
print("k={0},b={1}".format(k,b))
plt.scatter(x,y)
plt.plot(x0,y0,label='LinearRegression')
plt.xlabel('X')
plt.ylabel('Y')
plt.legend()
plt.show()

结果:

k=[1.36695374],b=0.13079331831460195

(2)Python详细实现(方法1)

代码:

#方法1
import numpy as np
import matplotlib.pyplot as plt
from pylab import *
mpl.rcParams['font.sans-serif'] = ['SimHei']
mpl.rcParams['axes.unicode_minus'] = False
#数据生成
data = []
for i in range(100):
    x = np.random.uniform(3., 12.)
    # mean=0, std=1
    eps = np.random.normal(0., 1)
    y = 1.677 * x + 0.039 + eps
    data.append([x, y])
 
data = np.array(data)
 
#统计误差
# y = wx + b
def compute_error_for_line_given_points(b, w, points):
    totalError = 0
    for i in range(0, len(points)):
        x = points[i, 0]
        y = points[i, 1]
        # computer mean-squared-error
        totalError += (y - (w * x + b)) ** 2
    # average loss for each point
    return totalError / float(len(points))
 
 
#计算梯度
def step_gradient(b_current, w_current, points, learningRate):
    b_gradient = 0
    w_gradient = 0
    N = float(len(points))
    for i in range(0, len(points)):
        x = points[i, 0]
        y = points[i, 1]
        # grad_b = 2(wx+b-y)
        b_gradient += (2/N) * ((w_current * x + b_current) - y)
        # grad_w = 2(wx+b-y)*x
        w_gradient += (2/N) * x * ((w_current * x + b_current) - y)
    # update w'
    new_b = b_current - (learningRate * b_gradient)
    new_w = w_current - (learningRate * w_gradient)
    return [new_b, new_w]
 
#迭代更新
def gradient_descent_runner(points, starting_b, starting_w, learning_rate, num_iterations):
    b = starting_b
    w = starting_w
    # update for several times
    for i in range(num_iterations):
        b, w = step_gradient(b, w, np.array(points), learning_rate)
    return [b, w]
 
 
def main():
 
    learning_rate = 0.0001
    initial_b = 0  # initial y-intercept guess
    initial_w = 0  # initial slope guess
    num_iterations = 1000
    print("迭代前 b = {0}, w = {1}, error = {2}"
          .format(initial_b, initial_w,
                  compute_error_for_line_given_points(initial_b, initial_w, data))
          )
    print("Running...")
    [b, w] = gradient_descent_runner(data, initial_b, initial_w, learning_rate, num_iterations)
    print("第 {0} 次迭代结果 b = {1}, w = {2}, error = {3}".
          format(num_iterations, b, w,
                 compute_error_for_line_given_points(b, w, data))
          )
    plt.plot(data[:,0],data[:,1], color='b', marker='+', linestyle='--',label='true')
    plt.plot(data[:,0],w*data[:,0]+b,color='r',label='predict')
    plt.xlabel('X')
    plt.ylabel('Y')
    plt.legend()
    plt.show()
 
 
if __name__ == '__main__':
    main()
 
 

 结果:

迭代前 :b = 0, w = 0, error = 186.61000821356697
Running...
第 1000 次迭代结果:b = 0.20558501549252192, w = 1.6589067569038516, error = 0.9963685680112963

(3)Python详细实现(方法2)

代码:

#方法2
 
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib as mpl
mpl.rcParams["font.sans-serif"]=["SimHei"]
mpl.rcParams["axes.unicode_minus"]=False
 
 
# y = wx + b
#Import data
file=pd.read_csv("data.csv")
 
def compute_error_for_line_given(b, w):
    totalError = np.sum((file['y']-(w*file['x']+b))**2)
    return np.mean(totalError)
 
def step_gradient(b_current, w_current,  learningRate):
    b_gradient = 0
    w_gradient = 0
    N = float(len(file['x']))
    for i in range (0,len(file['x'])):
        # grad_b = 2(wx+b-y)
        b_gradient += (2 / N) * ((w_current * file['x'] + b_current) - file['y'])
        # grad_w = 2(wx+b-y)*x
        w_gradient += (2 / N) * file['x'] * ((w_current * file['x'] + b_current) - file['x'])
    # update w'
    new_b = b_current - (learningRate * b_gradient)
    new_w = w_current - (learningRate * w_gradient)
    return [new_b, new_w]
 
 
def gradient_descent_runner( starting_b, starting_w, learning_rate, num_iterations):
    b = starting_b
    w = starting_w
    # update for several times
    for i in range(num_iterations):
        b, w = step_gradient(b, w,  learning_rate)
    return [b, w]
 
 
def main():
    learning_rate = 0.0001
    initial_b = 0  # initial y-intercept guess
    initial_w = 0  # initial slope guess
    num_iterations = 100
    print("Starting gradient descent at b = {0}, w = {1}, error = {2}"
          .format(initial_b, initial_w,
                  compute_error_for_line_given(initial_b, initial_w))
          )
    print("Running...")
    [b, w] = gradient_descent_runner(initial_b, initial_w, learning_rate, num_iterations)
    print("After {0} iterations b = {1}, w = {2}, error = {3}".
          format(num_iterations, b, w,
                 compute_error_for_line_given(b, w))
          )
    plt.plot(file['x'],file['y'],'ro',label='线性回归')
    plt.xlabel('X')
    plt.ylabel('Y')
    plt.legend()
    plt.show()
 
 
 
 
if __name__ == '__main__':
    main()

结果:

Starting gradient descent at b = 0, w = 0, error = 75104.71822821398
Running...
After 100 iterations b = 0     0.014845
1     0.325621
2     0.036883
3     0.502265
4     0.564917
5     0.479366
6     0.568968
7     0.422619
8     0.565073
9     0.393907
10    0.216854
11    0.580750
12    0.379350
13    0.361574
14    0.511651
dtype: float64, w = 0     0.999520
1     0.994006
2     0.999405
3     0.989645
4     0.990683
5     0.991444
6     0.989282
7     0.989573
8     0.988498
9     0.992633
10    0.995329
11    0.989490
12    0.991617
13    0.993872
14    0.991116
dtype: float64, error = 6451.5510231710905

数据: 

(4)Python详细实现(方法3)

#方法3
 
import numpy as np
 
points = np.genfromtxt("data.csv", delimiter=",")
#从数据读入到返回需要两个迭代循环,第一个迭代将文件中每一行转化为一个字符串序列,
#第二个循环迭代对每个字符串序列指定合适的数据类型:
# y = wx + b
def compute_error_for_line_given_points(b, w, points):
    totalError = 0
    for i in range(0, len(points)):
        x = points[i, 0]
        y = points[i, 1]
        # computer mean-squared-error
        totalError += (y - (w * x + b)) ** 2
    # average loss for each point
    return totalError / float(len(points))
 
 
def step_gradient(b_current, w_current, points, learningRate):
    b_gradient = 0
    w_gradient = 0
    N = float(len(points))
    for i in range(0, len(points)):
        x = points[i, 0]
        y = points[i, 1]
        # grad_b = 2(wx+b-y)
        b_gradient += (2 / N) * ((w_current * x + b_current) - y)
        # grad_w = 2(wx+b-y)*x
        w_gradient += (2 / N) * x * ((w_current * x + b_current) - y)
    # update w'
    new_b = b_current - (learningRate * b_gradient)
    new_w = w_current - (learningRate * w_gradient)
    return [new_b, new_w]
 
 
def gradient_descent_runner(points, starting_b, starting_w, learning_rate, num_iterations):
    b = starting_b
    w = starting_w
    # update for several times
    for i in range(num_iterations):
        b, w = step_gradient(b, w, np.array(points), learning_rate)
    return [b, w]
 
 
def main():
    learning_rate = 0.0001
    initial_b = 0  # initial y-intercept guess
    initial_w = 0  # initial slope guess
    num_iterations = 1000
    print("Starting gradient descent at b = {0}, w = {1}, error = {2}"
          .format(initial_b, initial_w,
                  compute_error_for_line_given_points(initial_b, initial_w, points))
          )
    print("Running...")
    [b, w] = gradient_descent_runner(points, initial_b, initial_w, learning_rate, num_iterations)
    print("After {0} iterations b = {1}, w = {2}, error = {3}".
          format(num_iterations, b, w,
                 compute_error_for_line_given_points(b, w, points))
          )
 
 
if __name__ == '__main__':
    main()

4、案例——房屋与价格、尺寸

(1)代码

#1.导入包
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from sklearn import linear_model
 
#2.加载训练数据,建立回归方程
# 取数据集(1)
datasets_X = []     #存放房屋面积
datasets_Y = []     #存放交易价格
fr = open('房价与房屋尺寸.csv','r')    #读取文件,r: 以只读方式打开文件,w: 打开一个文件只用于写入。
lines = fr.readlines()              #一次读取整个文件。
for line in lines:                  #逐行进行操作,循环遍历所有数据
    items = line.strip().split(',')    #去除数据文件中的逗号,strip()用于移除字符串头尾指定的字符(默认为空格或换行符)或字符序列。
                                       #split(‘ '): 通过指定分隔符对字符串进行切片,如果参数 num 有指定值,则分隔 num+1 个子字符串。
    datasets_X.append(int(items[0]))   #将读取的数据转换为int型,并分别写入
    datasets_Y.append(int(items[1]))
 
length = len(datasets_X)              #求得datasets_X的长度,即为数据的总数
datasets_X = np.array(datasets_X).reshape([length,1])   #将datasets_X转化为数组,并变为1维,以符合线性回归拟合函数输入参数要求
datasets_Y = np.array(datasets_Y)                    #将datasets_Y转化为数组
 
#取数据集(2)
'''fr = pd.read_csv('房价与房屋尺寸.csv',encoding='utf-8')
datasets_X=fr['房屋面积']
datasets_Y=fr['交易价格']'''
 
minX = min(datasets_X)
maxX = max(datasets_X)
X = np.arange(minX,maxX).reshape([-1,1])        #以数据datasets_X的最大值和最小值为范围,建立等差数列,方便后续画图。
                                                #reshape([-1,1]),转换成1列,reshape([2,-1]):转换成两行
linear = linear_model.LinearRegression()      #调用线性回归模块,建立回归方程,拟合数据
linear.fit(datasets_X, datasets_Y)
 
#3.斜率及截距
print('Coefficients:', linear.coef_)      #查看回归方程系数(k)
print('intercept:', linear.intercept_)    ##查看回归方程截距(b)
print('y={0}x+{1}'.format(linear.coef_,linear.intercept_)) #拟合线
 
# 4.图像中显示
plt.scatter(datasets_X, datasets_Y, color = 'red')
plt.plot(X, linear.predict(X), color = 'blue')
plt.xlabel('Area')
plt.ylabel('Price')
plt.show()

(2)结果

Coefficients: [0.14198749]
intercept: 53.43633899175563
y=[0.14198749]x+53.43633899175563

(3)数据

第一列是房屋面积,第二列是交易价格:

到此这篇关于人工智能—Python实现线性回归的文章就介绍到这了,更多相关 Python实现线性回归内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • python机器学习基础线性回归与岭回归算法详解

    目录 一.什么是线性回归 1.线性回归简述 2.数组和矩阵 数组 矩阵 3.线性回归的算法 二.权重的求解 1.正规方程 2.梯度下降 三.线性回归案例 1.案例概述 2.数据获取 3.数据分割 4.数据标准化 5.模型训练 6.回归性能评估 7.梯度下降与正规方程区别 四.岭回归Ridge 1.过拟合与欠拟合 2.正则化 一.什么是线性回归 1.线性回归简述 线性回归,是一种趋势,通过这个趋势,我们能预测所需要得到的大致目标值.线性关系在二维中是直线关系,三维中是平面关系. 我们可以使用如下模

  • python实现线性回归算法

    本文用python实现线性回归算法,供大家参考,具体内容如下 # -*- coding: utf-8 -*- """ Created on Fri Oct 11 19:25:11 2019 """ from sklearn import datasets, linear_model # 引用 sklearn库,主要为了使用其中的线性回归模块 # 创建数据集,把数据写入到numpy数组 import numpy as np # 引用numpy库,主

  • Python线性回归图文实例详解

    目录 前言: 1.简单线性回归模型 2.多元线性回归模型 2.1 应用F检验法完成模型的显著性检验 2.2应用t检验法完成回归系数的显著性检验 3.基于回归模型识别异常点 4.含有离散变量的回归模型 1.删除无意义的变量 2.哑变量转换 3.将数据拆分为两部分 4.构建多元线性回归模型 5.未知年龄的预测 总结 前言: 线性回归模型属于经典的统计学模型,该模型的应用场景是根据已知的变量(即自变量)来预测某个连续的数值变量(即因变量).例如餐厅根据媒体的营业数据(包括菜谱价格.就餐人数.预订人数.

  • Python 机器学习之线性回归详解分析

    为了检验自己前期对机器学习中线性回归部分的掌握程度并找出自己在学习中存在的问题,我使用C语言简单实现了单变量简单线性回归. 本文对自己使用C语言实现单变量线性回归过程中遇到的问题和心得做出总结. 线性回归 线性回归是机器学习和统计学中最基础和最广泛应用的模型,是一种对自变量和因变量之间关系进行建模的回归分析. 代码概述 本次实现的线性回归为单变量的简单线性回归,模型中含有两个参数:变量系数w.偏置q. 训练数据为自己使用随机数生成的100个随机数据并将其保存在数组中.采用批量梯度下降法训练模型,

  • python深度总结线性回归

    目录 概述 例子 通俗解释 数学推导 误差 评估方法 梯度下降 批量梯度下降 随机梯度下降 小批量梯度下降法 案例一 概述 线性回归的定义是: 目标值预期是输入变量的线性组合. 线性模型形式简单, 易于建模, 但却蕴含着机器学习中一些重要的基本思想. 线性回归, 是利用数理统计中回归分析, 来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法, 运用十分广泛. 优点: 结果易于理解, 计算不复杂 缺点: 对非线性的数据拟合不好 例子 数据: 工资和年龄 (2 个特征) 目标: 预测银行

  • 人工智能—Python实现线性回归

    1.概述 (1)人工智能学习 (2)机器学习 (3)有监督学习 (4)线性回归 2.线性回归 (1)实现步骤 根据随机初始化的 w x b 和 y 来计算 loss 根据当前的 w x b 和 y 的值来计算梯度 更新梯度,循环将新的 w′ 和 b′ 复赋给 w 和 b ,最终得到一个最优的 w′ 和 b′ 作为方程最终的 (2)数学表达式 3.代码实现(Python) (1)机器学习库(sklearn.linear_model) 代码: from sklearn import linear_m

  • python人工智能算法之线性回归实例

    目录 线性回归 使用场景 分析: 总结: 线性回归 是一种常见的机器学习算法,也是人工智能中常用的算法.它是一种用于预测数值型输出变量与一个或多个自变量之间线性关系的方法.例如,你可以使用线性回归模型来预测房价,根据房屋的面积.地理位置.周围环境等. 主要思想是通过构建一个线性模型,来描述自变量和输出变量之间的关系.模型可以表示为: y = a0 + a1*x1 + a2*x2 + - + an*xn 其中,y是输出变量(也称为响应变量),x1.x2.….xn是自变量(也称为特征),a0.a1.

  • 人工智能-Python实现多项式回归

    目录 1.概述 1.1 有监督学习 1.2 多项式回归 2 概念 3 案例实现——方法1 3.1 案例分析 3.2 代码实现 3.3 结果 3.4 可视化 4 案例实现——方法2 4.1 代码 4.2 结果 4.3 可视化 1.概述 1.1 有监督学习 1.2 多项式回归 上一次我们讲解了线性回归,这次我们重点分析多项式回归. 多项式回归(Polynomial Regression) 是研究一个因变量与一 个或多个自变量间多项式的回归分析方法.如果自变量只有一个 时,称为一元多项式回归:如果自变

  • python编程线性回归代码示例

    用python进行线性回归分析非常方便,有现成的库可以使用比如:numpy.linalog.lstsq例子.scipy.stats.linregress例子.pandas.ols例子等. 不过本文使用sklearn库的linear_model.LinearRegression,支持任意维度,非常好用. 一.二维直线的例子 预备知识:线性方程y=a∗x+b.y=a∗x+b表示平面一直线 下面的例子中,我们根据房屋面积.房屋价格的历史数据,建立线性回归模型. 然后,根据给出的房屋面积,来预测房屋价格

  • 8种用Python实现线性回归的方法对比详解

    前言 说到如何用Python执行线性回归,大部分人会立刻想到用sklearn的linear_model,但事实是,Python至少有8种执行线性回归的方法,sklearn并不是最高效的. 今天,让我们来谈谈线性回归.没错,作为数据科学界元老级的模型,线性回归几乎是所有数据科学家的入门必修课.抛开涉及大量数统的模型分析和检验不说,你真的就能熟练应用线性回归了么?未必! 在这篇文章中,文摘菌将介绍8种用Python实现线性回归的方法.了解了这8种方法,就能够根据不同需求,灵活选取最为高效的方法实现线

  • python实现线性回归的示例代码

    目录 1线性回归 1.1简单线性回归 1.2多元线性回归 1.3使用sklearn中的线性回归模型 1线性回归 1.1简单线性回归 在简单线性回归中,通过调整a和b的参数值,来拟合从x到y的线性关系.下图为进行拟合所需要优化的目标,也即是MES(Mean Squared Error),只不过省略了平均的部分(除以m). 对于简单线性回归,只有两个参数a和b,通过对MSE优化目标求极值(最小二乘法),即可求得最优a和b如下,所以在训练简单线性回归模型时,也只需要根据数据求解这两个参数值即可. 下面

  • AI人工智能 Python实现人机对话

    在人工智能进展的如火如荼的今天,我们如果不尝试去接触新鲜事物,马上就要被世界淘汰啦~ 本文拟使用Python开发语言实现类似于WIndows平台的"小娜",或者是IOS下的"Siri".最终达到人机对话的效果. [实现功能] 这篇文章将要介绍的主要内容如下: 1.搭建人工智能--人机对话服务端平台 2.实现调用服务端平台进行人机对话交互 [实现思路] AIML AIML由Richard Wallace发明.他设计了一个名为 A.L.I.C.E. (Artificia

  • 人工智能-Python实现岭回归

    1 概述 1.1 线性回归 对于一般地线性回归问题,参数的求解采用的是最小二乘法,其目标函数如下: 参数 w 的求解,也可以使用如下矩阵方法进行: 这个公式看着吓人,其实推导过程简单由(推导而来,纸老虎)对于矩阵 X ,若某些列线性相关性较大(即训练样本中某些属性线性相关),就会导致的值接近 0 ,在计算时就会出现不稳定性.结论 : 传统的基于最小二乘的线性回归法缺乏稳定性. 1.2 岭回归 岭回归的优化目标:  对应的矩阵求解方法为:          岭回归(ridge regression

  • 解读! Python在人工智能中的作用

    人工智能是一种未来性的技术,目前正在致力于研究自己的一套工具.一系列的进展在过去的几年中发生了:无事故驾驶超过300000英里并在三个州合法行驶迎来了自动驾驶的一个里程碑:IBM Waston击败了Jeopardy两届冠军;统计学习技术从对消费者兴趣到以万亿记的图像的复杂数据集进行模式识别. 这些发展必然提高了科学家和巨匠们对人工智能的兴趣,这也使得开发者们了解创建人工智能应用的真实本质.开发这些需要注意的第一件事是: 哪一种编程语言适合人工智能? 你所熟练掌握的每一种编程语言都可以是人工智能的

随机推荐