Python requests及aiohttp速度对比代码实例

环境:centos7 python3.6

测试网址:www.bai.com

测试方式:抓取百度100次

结果:

aio: 10.702147483825684s
requests: 12.404678583145142s

异步框架的速度还是有显著提升的。

下面贡献代码:

import aiohttp
import time
import requests
import asyncio

def test_requests():
  """ 测试requessts请求百度100次时间 """

  start = time.time()
  url = "https://www.baidu.com"
  for i in range(100):
    requests.get(url)
  end = time.time()
  print("requests:")
  print( end - start )

async def aio_download(url):
  """ aiohttp 下载 """

  async with aiohttp.ClientSession() as session:
    await session.get(url)

async def test_aio():
  """ 测试aiohtpp请求百度100次时间 """
  url = "https://www.baidu.com"
  start = time.time()
  for i in range(100):
    await aio_download(url)
  end = time.time()
  print("aio: ")
  print( end - start )

if __name__ == "__main__":

  loop = asyncio.get_event_loop()
  loop.run_until_complete(test_aio())

  test_requests()

————————————————————————————————————————

-—————————————————————————————————————————

小贴士:

requests不要使用session进行反复抓取一个网站的测试,因为从第2次开始,读取的就是缓存了,无论抓取50次还是100次或是更多,总时间都是1s以内。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Python中asyncio与aiohttp入门教程

    很多朋友对异步编程都处于"听说很强大"的认知状态.鲜有在生产项目中使用它.而使用它的同学,则大多数都停留在知道如何使用 Tornado.Twisted.Gevent 这类异步框架上,出现各种古怪的问题难以解决.而且使用了异步框架的部分同学,由于用法不对,感觉它并没牛逼到哪里去,所以很多同学做 Web 后端服务时还是采用 Flask.Django等传统的非异步框架. 从上两届 PyCon 技术大会看来,异步编程已经成了 Python 生态下一阶段的主旋律.如新兴的 Go.Rust.Eli

  • 构建高效的python requests长连接池详解

    前文: 最近在搞全网的CDN刷新系统,在性能调优时遇到了requests长连接的一个问题,以前关注过长连接太多造成浪费的问题,但因为系统都是分布式扩展的,针对这种各别问题就懒得改动了. 现在开发的缓存刷新系统,对于性能还是有些敏感的,我后面会给出最优的http长连接池构建方式. 老生常谈: python下的httpclient库哪个最好用? 我想大多数人还是会选择requests库的.原因么?也就是简单,易用! 如何蛋疼的构建reqeusts的短连接请求: python requests库默认就

  • python requests.get带header

    啥也不说了,大家还是直接看图吧! 补充知识:python http request header主要内容 http request 请求头主要包括内容如下: header名 作用 示例 Accept 指定客户端能够接收的内容类型 Accept: text/plain, text/html Accept-Charset 浏览器可以接受的字符编码集. Accept-Charset: iso-8859-5 Accept-Language 浏览器可接受的语言 Accept-Language: en,zh

  • python aiohttp的使用详解

    1.aiohttp的简单使用(配合asyncio模块) import asyncio,aiohttp async def fetch_async(url): print(url) async with aiohttp.request("GET",url) as r: reponse = await r.text(encoding="utf-8") #或者直接await r.read()不编码,直接读取,适合于图像等无法编码文件 print(reponse) task

  • Python中利用aiohttp制作异步爬虫及简单应用

    摘要: 简介 asyncio可以实现单线程并发IO操作,是Python中常用的异步处理模块.关于asyncio模块的介绍,笔者会在后续的文章中加以介绍,本文将会讲述一个基于asyncio实现的HTTP框架--aiohttp,它可以帮助我们异步地实现HTTP请求,从而使得我们的程序效率大大提高. 简介 asyncio可以实现单线程并发IO操作,是Python中常用的异步处理模块.关于asyncio模块的介绍,笔者会在后续的文章中加以介绍,本文将会讲述一个基于asyncio实现的HTTP框架--ai

  • Python aiohttp百万并发极限测试实例分析

    本文实例讲述了Python aiohttp百万并发极限测试.分享给大家供大家参考,具体如下: 本文将测试python aiohttp的极限,同时测试其性能表现,以分钟发起请求数作为指标.大家都知道,当应用到网络操作时,异步的代码表现更优秀,但是验证这个事情,同时搞明白异步到底有多大的优势以及为什么会有这样的优势仍然是一件有趣的事情.为了验证,我将发起1000000请求,用aiohttp客户端.aiohttp每分钟能够发起多少请求?你能预料到哪些异常情况以及崩溃会发生,当你用比较粗糙的脚本去发起如

  • python中urllib.request和requests的使用及区别详解

    urllib.request 我们都知道,urlopen()方法能发起最基本对的请求发起,但仅仅这些在我们的实际应用中一般都是不够的,可能我们需要加入headers之类的参数,那需要用功能更为强大的Request类来构建了 在不需要任何其他参数配置的时候,可直接通过urlopen()方法来发起一个简单的web请求 发起一个简单的请求 import urllib.request url='https://www.douban.com' webPage=urllib.request.urlopen(

  • python requests包的request()函数中的参数-params和data的区别介绍

    如下所示: import requests url='http://www.baidu.com' #下面使用requests.request(method, url, **kwargs) re=requests.request('GET',url) 经验证,可用. 我们试着传入一个字典,首先用params参数. 结果为: 亮点在url和args. 我们还用get方法,把dic这个字典传给data试试看. 亮点还是在args和url.惊喜地发现,dic这个字典没传进去. 这是因为: params是

  • Python requests及aiohttp速度对比代码实例

    环境:centos7 python3.6 测试网址:www.bai.com 测试方式:抓取百度100次 结果: aio: 10.702147483825684s requests: 12.404678583145142s 异步框架的速度还是有显著提升的. 下面贡献代码: import aiohttp import time import requests import asyncio def test_requests(): """ 测试requessts请求百度100次时间

  • 基于python requests库中的代理实例讲解

    直接上代码: #request代理(proxy) """ 1.启动代理服务器Heroku,相当于aliyun 2.在主机1080端口启动Socks 服务 3.将请求转发到1080端口 4.获取相应资源 首先要安装包pip install 'requests[socksv5]' """ import requests #定义一个代理服务器,所有的http及https都走socks5的协议,sock5相当于http协议,它是在会话层 #把它转到本机的

  • Python定时发送天气预报邮件代码实例

    这篇文章主要介绍了Python定时发送天气预报邮件代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 用python爬虫爬到的天气预报,使用smtplib和email模块可以发送到邮箱,使用schedule模块可以定时发送.以下是代码- #导入模块 import requests from bs4 import BeautifulSoup import smtplib from email.mime.text import MIMEText

  • python爬虫添加请求头代码实例

    这篇文章主要介绍了python爬虫添加请求头代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 request import requests headers = { # 'Accept': 'application/json, text/javascript, */*; q=0.01', # 'Accept': '*/*', # 'Accept-Language': 'zh-CN,zh;q=0.9,en;q=0.8,en-US;q=0.7

  • Python读取表格类型文件代码实例

    这篇文章主要介绍了Python读取表格类型文件代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 代码如下 resp = My_Request_Get(xls_url) # My_Request_Get是我自己封装的请求函数,可修改为requests请求 f = open('%s.xls' % _dic['title'], 'wb') f.write(resp.content) f.close() con_list = self.Read_

  • Python多线程获取返回值代码实例

    这篇文章主要介绍了Python多线程获取返回值代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 在使用多线程的时候难免想要获取其操作完的返回值进行其他操作,下面的方法以作参考: 一,首先重写threading类,使其满足调用特定的方法获取其返回值 import threading class MyThread(threading.Thread): """重写多线程,使其能够返回值""" d

  • Python文件操作基本流程代码实例

    文件操作之基本流程 #文本 近日,上市药企--浙江莎普爱思药业股份有限公司频遭质疑. 12月2日,一篇名为<一年卖出7.5亿的洗脑"神药",请放过中国老人>的文章称, 多位眼科医生并不认可莎普爱思滴眼液的"白内障防治功效".质疑者认为, 莎普爱思滴眼液是"假科普,真营销",通过广告误导患者. 针对质疑,莎普爱思3日晚发布的公告称, 0.5%苄达 赖氨酸滴眼液已于上世纪90年代通过了临床试验, 是一种安全的.有效的抗白内障药物.假的 #

  • python的unittest测试类代码实例

    nittest单元测试框架不仅可以适用于单元测试,还可以适用WEB自动化测试用例的开发与执行,该测试框架可组织执行测试用例,并且提供了丰富的断言方法,判断测试用例是否通过,最终生成测试结果.今天笔者就总结下如何使用unittest单元测试框架来进行WEB自动化测试. 题目: 编写一个名为Employee的类,其方法__init__()接受名.姓和年薪,并将它们都存储在属性中.编写一个名为give_raise()的方法,它默认将年薪增加5000美元,但也能够接受其他的年薪增加量. 为Employe

  • python识别文字(基于tesseract)代码实例

    这篇文章主要介绍了python识别文字(基于tesseract)代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 Ubuntu版本: 1.tesseract-ocr安装 sudo apt-get install tesseract-ocr 2.pytesseract安装 sudo pip install pytesseract 3.Pillow 安装 sudo pip install pillow 开始写代码: from PIL impo

  • Python csv模块使用方法代码实例

    这篇文章主要介绍了Python csv模块使用方法代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 import csv def openSCV(filename): with open("renting.csv",'r',encoding = 'utf_8_sig') as f: f_csv = csv.reader(f) for row in f_csv: print(row) def Test1(): headers =

随机推荐