C++实现LeetCode(63.不同的路径之二)

[LeetCode] 63. Unique Paths II 不同的路径之二

A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).

Now consider if some obstacles are added to the grids. How many unique paths would there be?

An obstacle and empty space is marked as 1 and 0 respectively in the grid.

Note: m and n will be at most 100.

Example 1:

Input:
[
[0,0,0],
[0,1,0],
[0,0,0]
]
Output: 2
Explanation:
There is one obstacle in the middle of the 3x3 grid above.
There are two ways to reach the bottom-right corner:
1. Right -> Right -> Down -> Down
2. Down -> Down -> Right -> Right

这道题是之前那道 Unique Paths 的延伸,在路径中加了一些障碍物,还是用动态规划 Dynamic Programming 来解,使用一个二维的 dp 数组,大小为 (m+1) x (n+1),这里的 dp[i][j] 表示到达 (i-1, j-1) 位置的不同路径的数量,那么i和j需要更新的范围就是 [1, m] 和 [1, n]。状态转移方程跟之前那道题是一样的,因为每个位置只能由其上面和左面的位置移动而来,所以也是由其上面和左边的 dp 值相加来更新当前的 dp 值,如下所示:

dp[i][j] = dp[i-1][j] + dp[i][j-1]

这里就能看出来初始化 d p数组的大小为 (m+1) x (n+1),是为了 handle 边缘情况,当i或j为0时,减1可能会出错。当某个位置是障碍物时,其 dp 值为0,直接跳过该位置即可。这里还需要初始化 dp 数组的某个值,使得其能正常累加。当起点不是障碍物时,其 dp 值应该为1,即dp[1][1] = 1,由于其是由 dp[0][1] + dp[1][0] 更新而来,所以二者中任意一个初始化为1即可。由于之后 LeetCode 更新了这道题的 test case,使得使用 int 型的 dp 数组会有溢出的错误,所以改为使用 long 型的数组来避免 overflow,代码如下:

解法一:

class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
        if (obstacleGrid.empty() || obstacleGrid[0].empty() || obstacleGrid[0][0] == 1) return 0;
        int m = obstacleGrid.size(), n = obstacleGrid[0].size();
        vector<vector<long>> dp(m + 1, vector<long>(n + 1, 0));
        dp[0][1] = 1;
        for (int i = 1; i <= m; ++i) {
            for (int j = 1; j <= n; ++j) {
                if (obstacleGrid[i - 1][j - 1] != 0) continue;
                dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
            }
        }
        return dp[m][n];
    }
};

或者我们也可以使用一维 dp 数组来解,省一些空间,参见代码如下:

解法二:

class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
        if (obstacleGrid.empty() || obstacleGrid[0].empty() || obstacleGrid[0][0] == 1) return 0;
        int m = obstacleGrid.size(), n = obstacleGrid[0].size();
        vector<long> dp(n, 0);
        dp[0] = 1;
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                if (obstacleGrid[i][j] == 1) dp[j] = 0;
                else if (j > 0) dp[j] += dp[j - 1];
            }
        }
        return dp[n - 1];
    }
};

到此这篇关于C++实现LeetCode(63.不同的路径之二)的文章就介绍到这了,更多相关C++实现不同的路径之二内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • C++实现LeetCode(60.序列排序)

    [LeetCode] 60. Permutation Sequence 序列排序 The set [1,2,3,...,n] contains a total of n! unique permutations. By listing and labeling all of the permutations in order, we get the following sequence for n = 3: "123" "132" "213" &

  • C++实现LeetCode(58.求末尾单词的长度)

    [LeetCode] 58. Length of Last Word 求末尾单词的长度 Given a string s consists of upper/lower-case alphabets and empty space characters ' ', return the length of last word in the string. If the last word does not exist, return 0. Note: A word is defined as a

  • C++实现LeetCode(61.旋转链表)

    [LeetCode] 61. Rotate List 旋转链表 Given the head of a linked list, rotate the list to the right by k places. Example 1: Input: head = [1,2,3,4,5], k = 2 Output: [4,5,1,2,3] Example 2: Input: head = [0,1,2], k = 4 Output: [2,0,1] Constraints: The number

  • C++实现LeetCode(70.爬楼梯问题)

    [LeetCode] 70. Climbing Stairs 爬楼梯问题 You are climbing a stair case. It takes n steps to reach to the top. Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top? Note: Given n will be a positive integer. Examp

  • C++实现LeetCode(59.螺旋矩阵之二)

    [LeetCode] 59. Spiral Matrix II 螺旋矩阵之二 Given a positive integer n, generate a square matrix filled with elements from 1 to n2 in spiral order. Example: Input: 3 Output: [ [ 1, 2, 3 ], [ 8, 9, 4 ], [ 7, 6, 5 ] ] 此题跟之前那道 Spiral Matrix 本质上没什么区别,就相当于个类似逆

  • C++实现LeetCode(62.不同的路径)

    [LeetCode] 62. Unique Paths 不同的路径 A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner

  • C++实现LeetCode(189.旋转数组)

    [LeetCode] 189. Rotate Array 旋转数组 Given an array, rotate the array to the right by k steps, where k is non-negative. Example 1: Input: [1,2,3,4,5,6,7] and k = 3 Output: [5,6,7,1,2,3,4] Explanation: rotate 1 steps to the right: [7,1,2,3,4,5,6] rotate

  • C++实现LeetCode(63.不同的路径之二)

    [LeetCode] 63. Unique Paths II 不同的路径之二 A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right c

  • C++实现LeetCode(112.二叉树的路径和)

    [LeetCode] 112. Path Sum 二叉树的路径和 Given a binary tree and a sum, determine if the tree has a root-to-leaf path such that adding up all the values along the path equals the given sum. Note: A leaf is a node with no children. Example: Given the below bi

  • C++实现LeetCode(52.N皇后问题之二)

    [LeetCode] 52. N-Queens II N皇后问题之二 The n-queens puzzle is the problem of placing nqueens on an n×n chessboard such that no two queens attack each other. Given an integer n, return the number of distinct solutions to the n-queens puzzle. Example: Inpu

  • C++实现LeetCode(137.单独的数字之二)

    [LeetCode] 137. Single Number II 单独的数字之二 Given a non-empty array of integers, every element appears three times except for one, which appears exactly once. Find that single one. Note: Your algorithm should have a linear runtime complexity. Could you

  • C++实现LeetCode(107.二叉树层序遍历之二)

    [LeetCode] 107. Binary Tree Level Order Traversal II 二叉树层序遍历之二 Given the root of a binary tree, return the bottom-up level order traversal of its nodes' values. (i.e., from left to right, level by level from leaf to root). Example 1: Input: root = [3

  • C++实现LeetCode(109.将有序链表转为二叉搜索树)

    [LeetCode] 109.Convert Sorted List to Binary Search Tree 将有序链表转为二叉搜索树 Given a singly linked list where elements are sorted in ascending order, convert it to a height balanced BST. For this problem, a height-balanced binary tree is defined as a binary

  • C++实现LeetCode(108.将有序数组转为二叉搜索树)

    [LeetCode] 108.Convert Sorted Array to Binary Search Tree 将有序数组转为二叉搜索树 Given an array where elements are sorted in ascending order, convert it to a height balanced BST. For this problem, a height-balanced binary tree is defined as a binary tree in wh

  • C++实现LeetCode(119.杨辉三角之二)

    [LeetCode] 119. Pascal's Triangle II 杨辉三角之二 Given a non-negative index k where k ≤ 33, return the kth index row of the Pascal's triangle. Note that the row index starts from 0. In Pascal's triangle, each number is the sum of the two numbers directly

  • C++实现LeetCode(167.两数之和之二 - 输入数组有序)

    [LeetCode] 167.Two Sum II - Input array is sorted 两数之和之二 - 输入数组有序 Given an array of integers that is already sorted in ascending order, find two numbers such that they add up to a specific target number. The function twoSum should return indices of t

随机推荐