springboot集成opencv实现人脸识别功能的详细步骤

前言

项目中检测人脸图片是否合法的功能,之前用的是百度的人脸识别接口,由于成本高昂不得不寻求替代方案。

什么是opencv?

OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉和机器学习软件库,可以运行在Linux、Windows、Android和Mac OS操作系统上。轻量级而且高效——由一系列 C 函数和少量 C++ 类构成,同时提供了Python、Java、MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法。

项目集成步骤

由于项目是放在Linux系统中跑的,开发环境是Windows10,所以项目中涉及到opencv的要分两套。

准备工作

Windows安装opencv

opencv官网下载安装包https://opencv.org/releases/

我这里选择的是4.1.1版本
分别下载了Windows版本和源码

Windows环境下集成

安装opencv,没什么说的,指定一个路径安装即可,注意安装路径不能是中文。
项目中集成的三个关键点

  • 引入jar依赖
  • 读取OpenCV自带的人脸识别特征XML文件
  • 配置opencv的库文件地址

关键点1:引入jar包

jar包位置在安装路径下的java文件夹中

两种方式引入

方式一:idea添加jar

或者直接在Libraries中添加二者皆可。

方式二:将jar上传至私服,在maven中引入

我这里是将jar上传至私服,然后引用的。
注意Windows版的jar和Linux中的jar不一样,二者要区分开来
通过Maven配置在不同环境下加载不同的jar

<profiles>
    <profile>
        <id>dev</id>
        <dependencies>
<!--            本地引用-->
<!--                <dependency>-->
<!--                    <groupId>op</groupId>-->
<!--                    <artifactId>opencv</artifactId>-->
<!--                    <version>411</version>-->
<!--                    <scope>system</scope>-->
<!--                    <systemPath>-->
<!--                        ${project.basedir}/src/main/resources/opencv/windows/opencv-411.jar-->
<!--                    </systemPath>-->
<!--                </dependency>-->

<!--            仓库引用-->
            <dependency>
            <!--                这里改成自己的仓库地址-->
                <groupId>com.***.cloud.resource</groupId>
                <artifactId>opencv-window</artifactId>
                <version>411</version>
            </dependency>
        </dependencies>
        <activation>
            <activeByDefault>true</activeByDefault>
        </activation>
    </profile>
    <profile>
        <id>test</id>
        <dependencies>
            <dependency>
            <!--                这里改成自己的仓库地址-->
                <groupId>com.***.cloud.resource</groupId>
                <artifactId>opencv-linux</artifactId>
                <version>411</version>
            </dependency>
        </dependencies>
    </profile>
</profiles>

关键点2:配置人脸识别特征XML文件的地址

在bootstrap.yml添加如下参数

#  函数库地址 在 vm optionis中 配置
#  windows地址: -Djava.library.path=D:\software\opencv\build\java\x64
#  linux地址:   -Djava.library.path=/usr/local/opencv-4.1.1/build/lib/
opencv:
  lib:
    linuxxmlpath: /usr/local/share/opencv4/haarcascades/haarcascade_frontalface_alt.xml
    windowxmlpath: D:\software\opencv\sources\data\haarcascades\haarcascade_frontalface_alt.xml

测试的方法中就直接写死了

 /**
     * 初始化人脸探测器
     */
    static CascadeClassifier faceDetector;

    static {
        String systemProperties = String.valueOf(System.getProperties());
        log.info(systemProperties);
        System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
        faceDetector = new CascadeClassifier("D:\\software\\opencv\\sources\\data\\haarcascades\\haarcascade_frontalface_alt.xml");
    }

注意路径!!

关键点3:配置opencv的库文件地址

-Djava.library.path=D:\software\opencv\build\java\x64

这里其实指向的就是 该目录下的 opencv_java411.dll 文件
(linux的配置见下文)

代码

测试方法

package com.example.opencvdemo.test;

import lombok.extern.slf4j.Slf4j;
import org.opencv.core.*;
import org.opencv.highgui.HighGui;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
import org.opencv.objdetect.CascadeClassifier;

/**
 * @author aaron
 * @since 2021-06-07
 */
@Slf4j
public class FaceVideo {
    /**
     * 初始化人脸探测器
     */
    static CascadeClassifier faceDetector;

    static {
        String systemProperties = String.valueOf(System.getProperties());
        log.info(systemProperties);
        System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
        faceDetector = new CascadeClassifier("D:\\software\\opencv\\sources\\data\\haarcascades\\haarcascade_frontalface_alt.xml");
    }

    public static void main(String[] args){
        // 3- 本地图片人脸识别,识别成功并保存人脸图片到本地
        String imgPath = "C:\\Users\\Administrator\\Pictures\\wang.jpg";
        face(imgPath);
    }

    /**
     * OpenCV-4.1.1 图片人脸识别
     *
     * @return: void
     * @date: 2019年5月7日12:16:55
     */
    public static void face(String imgPath) {
        /**
         * 读取本地
         */
        Mat image = Imgcodecs.imread(imgPath);
        if (image.empty()) {
            System.out.println("image 内容不存在!");
            return;
        }
        // 3 特征匹配
        MatOfRect face = new MatOfRect();
        faceDetector.detectMultiScale(image, face);
        // 4 匹配 Rect 矩阵 数组
        Rect[] rects = face.toArray();
        System.out.println("匹配到 " + rects.length + " 个人脸");
        // 5 为每张识别到的人脸画一个圈
        int i = 1;
        for (Rect rect : face.toArray()) {
            Imgproc.rectangle(image, new Point(rect.x, rect.y), new Point(rect.x + rect.width, rect.y + rect.height),
                    new Scalar(0, 255, 0), 3);
            imageCut(imgPath, "D:\\pictures\\" + i + ".jpg", rect.x, rect.y, rect.width, rect.height);// 进行图片裁剪
            i++;
        }
        // 6 展示图片
        HighGui.imshow("人脸识别", image);
        HighGui.waitKey(0);
    }
    /**
     * 裁剪人脸
     *
     * @param imagePath
     * @param outFile
     * @param posX
     * @param posY
     * @param width
     * @param height
     */
    public static void imageCut(String imagePath, String outFile, int posX, int posY, int width, int height) {
        // 原始图像
        Mat image = Imgcodecs.imread(imagePath);
        // 截取的区域:参数,坐标X,坐标Y,截图宽度,截图长度
        Rect rect = new Rect(posX, posY, width, height);
        // 两句效果一样
        Mat sub = image.submat(rect); // Mat sub = new Mat(image,rect);
        Mat mat = new Mat();
        Size size = new Size(width, height);
        Imgproc.resize(sub, mat, size);// 将人脸进行截图并保存
        Imgcodecs.imwrite(outFile, mat);
        System.out.println(String.format("图片裁切成功,裁切后图片文件为: %s", outFile));

    }
}

注意!Mat image = Imgcodecs.imread(imgPath);
imgPath中不能带有中文!
opencv安装路径中如果有中文的话就会报错。

集成到Springboot

package com.example.opencvdemo.util;

import com.example.opencvdemo.exception.PublicException;
import com.example.opencvdemo.result.ErrorCode;
import com.google.common.primitives.Bytes;
import lombok.extern.slf4j.Slf4j;
import org.opencv.core.*;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.objdetect.CascadeClassifier;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.boot.CommandLineRunner;
import org.springframework.stereotype.Component;

import java.io.*;
import java.net.URL;
import java.net.URLConnection;
import java.util.ArrayList;
import java.util.List;

/**
 * @author aaron
 * @since 2021-06-07
 */
@Component
@Slf4j
public class OpenCvUtils implements CommandLineRunner {

    @Value("${opencv.lib.linuxxmlpath}")
    private String linuxXmlPath;
    @Value("${opencv.lib.windowxmlpath}")
    private String windowXmlPath;

    /**
     * 人脸探测器对象
     */
    static CascadeClassifier faceDetector;

    /**
     * 判断是否是Windows系统
     */
    private static final boolean IS_WINDOWS = System.getProperty("os.name").toLowerCase().contains("win");

    /**
     * 监测图片是否合法,是否只有一张脸
     */
    public static void checkFace(String pictureUrl) throws Exception {
//        //将在线图片保存为本地图片
//        String imgPath = saveLocal(pictureUrl);
//        //本地图片
//        File file  = new File(imgPath);
//        FileInputStream fileInputStream = new FileInputStream(file);
//        ByteArrayOutputStream out = new ByteArrayOutputStream();
//        byte[] localBuff = new byte[fileInputStream.available()];
//        fileInputStream.read(localBuff);
//        out.write(localBuff);
//        log.info("本地图片:"+localBuff.length);

        //在线图片
        URL url = new URL(pictureUrl);
        URLConnection uc = url.openConnection();
        InputStream inputStream = uc.getInputStream();
        ByteArrayOutputStream swapStream = new ByteArrayOutputStream();
        byte[] buff = new byte[1024];
        int rc;
        while ((rc = inputStream.read(buff, 0, 1024)) > 0) {
            swapStream.write(buff, 0, rc);
        }
        byte[] urlBuff = swapStream.toByteArray();

        log.info("在线图片:"+urlBuff.length);

        List<Byte> bs = new ArrayList<>();
        bs.addAll(Bytes.asList(urlBuff));
        log.info("buffer长度"+bs.size());
        /**
         * 不好使
         */
//        Mat image =  Converters.vector_char_to_Mat(bs);
//        Mat image  =  Converters.vector_uchar_to_Mat(bs);
        /**
         * 读取本地
         */
//        Mat image = Imgcodecs.imread(imgPath);
        /**
         * 读数据流
         */
        Mat image  = Imgcodecs.imdecode(new MatOfByte(urlBuff), Imgcodecs.IMREAD_UNCHANGED);

        if (image.empty()) {
            log.error("image 内容不存在!");
            return;
        }
        // 3 特征匹配
        MatOfRect face = new MatOfRect();
        faceDetector.detectMultiScale(image, face);
        // 4 匹配 Rect 矩阵 数组
        Rect[] rects = face.toArray();
        System.out.println("匹配到 " + rects.length + " 个人脸");
//        delFile(imgPath);
        if (rects.length == 0) {
            throw new PublicException(ErrorCode.A0430.getCode(), "没有监测到人脸");
        } else if (rects.length > 1) {
            throw new PublicException(ErrorCode.A0430.getCode(), "检测到图片有多张人脸,请重新上传");
        }
    }

    public static String saveLocal(String pictureUrl) throws IOException {
        URL url = new URL(pictureUrl);
        URLConnection uc = url.openConnection();
        InputStream inputStream = uc.getInputStream();
        String[] value = pictureUrl.split("/");
        String firstFilePath = "D:\\pictures\\";
        if (!IS_WINDOWS) {
            firstFilePath = "/tmp/tmp-picture/";
        }
        String fileName = firstFilePath + value[value.length - 1];
        FileOutputStream out = new FileOutputStream(fileName);
        int j = 0;
        while ((j = inputStream.read()) != -1) {
            out.write(j);
        }
        inputStream.close();
        return fileName;
    }

    /**
     * Callback used to run the bean.
     *
     * @param args incoming main method arguments
     * @throws Exception on error
     */
    @Override
    public void run(String... args){
        String systemProperties = String.valueOf(System.getProperties());
        log.info(systemProperties);
        System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
        String path = "";
        //如果是window系统取出路径开头的/
        if (IS_WINDOWS) {
            path = windowXmlPath;
        }else{
            path = linuxXmlPath;
        }
        /**
         * 初始化人脸探测器
         */
        faceDetector = new CascadeClassifier(path);
        log.info("==========初始化人脸探测器成功===========");
    }
}

OpenCV 提供的 API 是直接根据路径读取图片的,所以最开始的时候我是把图片保存到本地在读取才成功的,但是这种方式太憨了点,在实际生产环境中,大部分情况下都是直接读取网络图片。在内存就完成图片和 opencv 的 Mat 对象的转换。这里代码中已经解决了url地址图片转化的问题。
这里附上解决该问题的博客 传送门

Linux安装opencv

Linux平台须要咱们手动编译,下载opencv-4.1.1.zip,解压到/user/local目录下,而后编译

yum  install   ant    gcc  gtk2-devel   pkgconfig  zlib-devel

安装unzip命令

yum install -y unzip zip

解压命令

unzip opencv-4.1.1.zip
yum   groupinstall "Development Tools"

安装cmake

查看cmake当前版本

cmake --version
yum -y install wget

下载获得cmake-3.9.2源码

wget https://cmake.org/files/v3.9/cmake-3.9.2.tar.gz

解压、安装新版本

tar -xvf cmake-3.9.2.tar.gz

cd cmake-3.9.2

./configure

sudo make && make install
cd /usr/local/opencv-4.1.1
mkdir build
cd build
cmake -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=/usr/local -DBUILD_TESTS=OFF ..
make -j8
sudo make install

对应的jar和.so文件在

/usr/local/share/java/opencv4/

人脸识别特征XML文件的地址

/usr/local/share/opencv4/haarcascades/haarcascade_frontalface_alt.xml

Linux启动

jar 启动命令添加Vm options

nohup java -jar -Djava.library.path=/usr/local/opencv-4.1.1/build/lib/ opencv-demo-1.0.jar  > logs/opencv-demo-1.0.log 2>&1 &

github直接白嫖

项目代码已上传至github,可通过web接口测试,也可用main方法测试。传送门

参考博客地址
https://blog.csdn.net/fangchao2011/article/details/99858927
https://blog.csdn.net/eggtargaryen/article/details/83343358
https://blog.csdn.net/wangyulj/article/details/79058390
https://blog.csdn.net/qq_25775675/article/details/107808544?
https://lequ7.com/guan-yu-springbootspringboot-shi-yong-opencv-zong-jie.htmlutm_medium=distribute.pc_relevant.none-task-blog-baidujs_title-0&spm=1001.2101.3001.4242
https://blog.csdn.net/whudee/article/details/93379780

以上就是springboot集成opencv实现人脸识别功能的详细内容,更多关于springboot opencv人脸识别的资料请关注我们其它相关文章!

(0)

相关推荐

  • SpringBoot使用OpenCV示例总结

    前言 最近有个项目需要对图片图像进行处理,使用到了开源框架OpenCV全称是Open Source Computer Vision Library,是一个跨平台的计算机视觉库:而现在的项目都是基于SpringBoot,需要把OpenCv整合进去,下面把在使用中遇到的问题进行一个汇总整理. 下载安装 Opencv官网提供了一个多个平台的版本包括:Windows,IOS,Android,地址如下:opencv.org/releases/:因为开发在Windows平台,发布在Linux平台,所以我们这

  • SpringBoot整合OpenCV的实现示例

    简介 接下来会讲解怎么用SpringBoot整合OpenCV 初始化SpringBoot项目 这里正常初始一个SpringBoot项目 依赖文件 在安装目录下找到以下两个文件,如果不知道怎么安装OpenCV,可查看这篇文章,Windows下安装OpenCV opencv\build\java\opencv-420.jar opencv\build\java\x64\opencv_java420.dll 在resource目录下新建一个lib文件夹,然后将两个文件复制到resource\lib下

  • SpringBoot+Tess4j实现牛逼的OCR识别工具的示例代码

    前言 " 等不到风中你的脸颊 眼泪都美到很融洽 等不到掩饰的雨落下 我的眼泪被你察觉 " 听着循环的歌曲,写着久违的bug.好吧,还是一天.正好一个小伙伴说,要不要做个工具站玩一下.我就随意的找了个工具站,看了下,发现很多都有文字的OCR识别功能.因此,我想起来之前了解的非常流行的开源的OCR大神级别的项目,Tesseract OCR. 简单介绍 官网如下所示 tesseract-ocr.github.io/ 简洁明了,挂在github上的网站. 详细的不再介绍,感兴趣的,可以进入同志

  • springboot集成opencv实现人脸识别功能的详细步骤

    前言 项目中检测人脸图片是否合法的功能,之前用的是百度的人脸识别接口,由于成本高昂不得不寻求替代方案. 什么是opencv? OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉和机器学习软件库,可以运行在Linux.Windows.Android和Mac OS操作系统上.轻量级而且高效--由一系列 C 函数和少量 C++ 类构成,同时提供了Python.Java.MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法. 项目集成步骤 由于项目是放在Linux系统中跑的

  • python利用Opencv实现人脸识别功能

    本文实例为大家分享了python利用Opencv实现人脸识别功能的具体代码,供大家参考,具体内容如下 首先:需要在在自己本地安装opencv具体步骤可以问度娘 如果从事于开发中的话建议用第三方的人脸识别(推荐阿里) 1.视频流中进行人脸识别 # -*- coding: utf-8 -*- import cv2 import sys from PIL import Image def CatchUsbVideo(window_name, camera_idx): cv2.namedWindow(w

  • 手把手教你利用opencv实现人脸识别功能(附源码+文档)

    目录 一.环境 二.使用Haar级联进行人脸检测 三.Haar级联结合摄像头 四.使用SSD的人脸检测 五. SSD结合摄像头人脸检测 六.结语 一.环境 pip install opencv-python python3.9 pycharm2020 人狠话不多,直接上代码,注释在代码里面,不说废话. 二.使用Haar级联进行人脸检测 测试案例: 代码:(记得自己到下载地址下载对应的xml) # coding=gbk """ 作者:川川 @时间 : 2021/9/5 16:3

  • python调用OpenCV实现人脸识别功能

    Python调用OpenCV实现人脸识别,供大家参考,具体内容如下 硬件环境: Win10 64位 软件环境: Python版本:2.7.3 IDE:JetBrains PyCharm 2016.3.2 Python库: 1.1) opencv-python(3.2.0.6) 搭建过程: OpenCV Python库: 1. PyCharm的插件源中选择opencv-python(3.2.0.6)库安装 题外话:Python入门Tips PS1:如何安装whl文件 1.先安装PIP 2.CMD命

  • java+opencv实现人脸识别功能

    背景:最近需要用到人脸识别,但又不花钱使用现有的第三方人脸识别接口,为此使用opencv结合java进行人脸识别(ps:opencv是开源的,使用它来做人脸识别存在一定的误差,效果一般). 1.安装opencv 官网地址:https://opencv.org/ , 由于官网下载速度是真的慢 百度网盘: 链接: https://pan.baidu.com/s/1RpsP-I7v8pP2dkqALDw7FQ 提取码: pq7v 如果是官网下载,就无脑安装就行了,安装完毕后. 将图一的两个文件复制到图

  • C++ OpenCV实现银行卡号识别功能

    目录 前言 一.获取模板图像 1.1 功能效果 1.2 功能源码 二.银行卡号定位 2.1 将银行卡号切割成四块 2.2 字符切割 三.字符识别 3.1.读取文件 3.2.字符匹配 3.3.功能源码 四.效果显示 4.1 功能源码 4.2 效果显示 五.源码 5.1 hpp文件 5.2 cpp文件 5.3 main文件 总结 前言 本文将使用OpenCV C++ 进行银行卡号识别.主要步骤可以细分为: 1. 获取模板图像 2.银行卡号区域定位 3.字符切割 4.模板匹配 5.效果显示 接下来就具

  • Python基于OpenCV库Adaboost实现人脸识别功能详解

    本文实例讲述了Python基于OpenCV库Adaboost实现人脸识别功能.分享给大家供大家参考,具体如下: 以前用Matlab写神经网络的面部眼镜识别算法,研究算法逻辑,采集大量训练数据,迭代,计算各感知器的系数...相当之麻烦~而现在运用调用pythonOpenCV库Adaboost算法,无需知道算法逻辑,无需进行模型训练,人脸识别变得相当之简单了. 需要用到的库是opencv(open source computer vision),下载安装方式如下: 使用pip install num

  • 如何基于SpringBoot实现人脸识别功能

    目录 前言 需求分析 一.人脸注册 二.人脸登录 具体实现 一.人脸注册 二.刷脸登录 总结 前言 去年在公司参与了一个某某机场建设智能机场的一个项目,人脸登机是其中的一个功能模块,当时只是写了后台的接口,调用人脸识别设备的api,给闸机回传数据信号,以保障该功能的正常使用. 当时因为项目进度紧张,手里还有其他项目赶进度,也就没时间去分享这个功能的实现.前几天刷脸进公司大楼的时候,突然想起来应该写一个功能类似的demo分享个人的一些小小的经验.在当时项目中刷脸的设备终端是采购某某AI公司,当然咱

  • Python下应用opencv 实现人脸检测功能

    使用OpenCV's Haar cascades作为人脸检测,因为他做好了库,我们只管使用. 代码简单,除去注释,总共有效代码只有10多行. 所谓库就是一个检测人脸的xml 文件,可以网上查找,下面是一个地址: https://github.com/opencv/opencv/blob/master/data/haarcascades/haarcascade_frontalface_default.xml 如何构造这个库,学习完本文后可以参考: http://note.sonots.com/Sc

  • 用Python实现简单的人脸识别功能步骤详解

    前言 让我的电脑认识我,我的电脑只有认识我,才配称之为我的电脑! 今天,我们用Python实现简单的人脸识别技术! Python里,简单的人脸识别有很多种方法可以实现,依赖于python胶水语言的特性,我们通过调用包可以快速准确的达成这一目的.这里介绍的是准确性比较高的一种. 一.首先 梳理一下实现人脸识别需要进行的步骤: 流程大致如此,在此之前,要先让人脸被准确的找出来,也就是能准确区分人脸的分类器,在这里我们可以用已经训练好的分类器,网上种类较全,分类准确度也比较高,我们也可以节约在这方面花

随机推荐