tensorflow查看ckpt各节点名称实例

运行下列脚本,可以打印出模型各个节点变量的名称:

from tensorflow.python import pywrap_tensorflow
import os

checkpoint_path=os.path.join('model.ckpt-131805')
reader=pywrap_tensorflow.NewCheckpointReader(checkpoint_path)
var_to_shape_map=reader.get_variable_to_shape_map()
for key in var_to_shape_map:
 print 'tensor_name: ',key

checkpoint_path为自己的模型路径

以上这篇tensorflow查看ckpt各节点名称实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • 终端命令查看TensorFlow版本号及路径的方法

    如图,简单易懂,先激活tensorflow,然后进入python,输入python语句执行查询: 需要注意的是一定要在激活tensorflow环境后再输入python命令,否则会识别不到tensorflow,可以看到在使用python前后命令前面都是有"(tensorflow)"的. 以上这篇终端命令查看TensorFlow版本号及路径的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.

  • tensorflow实现打印ckpt模型保存下的变量名称及变量值

    有时候会需要通过从保存下来的ckpt文件来观察其保存下来的训练完成的变量值. ckpt文件名列表:(一般是三个文件) xxxxx.ckpt.data-00000-of-00001 xxxxx.ckpt.index xxxxx.ckpt.meta import os from tensorflow.python import pywrap_tensorflow checkpoint_path = os.path.join("文件夹路径", "xxxxx.ckpt")

  • Tensorflow获取张量Tensor的具体维数实例

    获取Tensor的维数 >>> import tensorflow as tf >>> tf.__version__ '1.2.0-rc1' >>> x=tf.placeholder(dtype=float32,shape=[1,2,3,4]) >>> x=tf.placeholder(dtype=tf.float32,shape=[1,2,3,4]) >>> x.shape TensorShape([Dimensi

  • tensorflow查看ckpt各节点名称实例

    运行下列脚本,可以打印出模型各个节点变量的名称: from tensorflow.python import pywrap_tensorflow import os checkpoint_path=os.path.join('model.ckpt-131805') reader=pywrap_tensorflow.NewCheckpointReader(checkpoint_path) var_to_shape_map=reader.get_variable_to_shape_map() for

  • 详解TensorFlow查看ckpt中变量的几种方法

    查看TensorFlow中checkpoint内变量的几种方法 查看ckpt中变量的方法有三种: 在有model的情况下,使用tf.train.Saver进行restore 使用tf.train.NewCheckpointReader直接读取ckpt文件,这种方法不需要model. 使用tools里的freeze_graph来读取ckpt 注意: 如果模型保存为.ckpt的文件,则使用该文件就可以查看.ckpt文件里的变量.ckpt路径为 model.ckpt 如果模型保存为.ckpt-xxx-

  • tensorflow ckpt模型和pb模型获取节点名称,及ckpt转pb模型实例

    ckpt from tensorflow.python import pywrap_tensorflow checkpoint_path = 'model.ckpt-8000' reader = pywrap_tensorflow.NewCheckpointReader(checkpoint_path) var_to_shape_map = reader.get_variable_to_shape_map() for key in var_to_shape_map: print("tensor_

  • TensorFlow查看输入节点和输出节点名称方式

    TensorFlow 定义输入节点名称input_name: with tf.name_scope('input'): bottleneck_input = tf.placeholder_with_default( bottleneck_tensor, shape=[batch_size, bottleneck_tensor_size], name='Mul') TensorFlow查看pb数据库里面的输入节点和输出节点: import tensorflow as tf import os mo

  • 将tensorflow的ckpt模型存储为npy的实例

    实例如下所示: #coding=gbk import numpy as np import tensorflow as tf from tensorflow.python import pywrap_tensorflow checkpoint_path='model.ckpt-5000'#your ckpt path reader=pywrap_tensorflow.NewCheckpointReader(checkpoint_path) var_to_shape_map=reader.get_

  • TensorFlow:将ckpt文件固化成pb文件教程

    本文是将yolo3目标检测框架训练出来的ckpt文件固化成pb文件,主要利用了GitHub上的该项目. 为什么要最终生成pb文件呢?简单来说就是直接通过tf.saver保存行程的ckpt文件其变量数据和图是分开的.我们知道TensorFlow是先画图,然后通过placeholde往图里面喂数据.这种解耦形式存在的方法对以后的迁移学习以及对程序进行微小的改动提供了极大的便利性.但是对于训练好,以后不再改变的话这种存在就不再需要.一方面,ckpt文件储存的数据都是变量,既然我们不再改动,就应当让其变

  • jQuery插件zTree实现更新根节点中第i个节点名称的方法示例

    本文实例讲述了jQuery插件zTree实现更新根节点中第i个节点名称的方法.分享给大家供大家参考,具体如下: 1.实现代码: <!DOCTYPE html> <html> <head> <title>zTree实现基本树</title> <meta http-equiv="content-type" content="text/html; charset=UTF-8"> <link re

  • tensorflow从ckpt和从.pb文件读取变量的值方式

    最近在学习tensorflow自带的量化工具的相关知识,其中遇到的一个问题是从tensorflow保存好的ckpt文件或者是保存后的.pb文件(这里的pb是把权重和模型保存在一起的pb文件)读取权重,查看量化后的权重是否变成整形. 因此将自己解决这个问题记录下来,为了下一次遇到时,可以有所参考,也希望给有需要的同学一个可能的参考. (1) 从保存的ckpt读取变量的值(以读取保存的第一个权重为例) from tensorflow.python import pywrap_tensorflow i

  • js实现编辑div节点名称的方法

    本文实例讲述了js实现编辑div节点名称的方法.分享给大家供大家参考.具体实现方法如下: 节点html代码如下: 复制代码 代码如下: <div class="img_1" id="img_1" >      <input type="image" class="img_1" src="img/cump.png"></input>      <div class=&

  • 对tensorflow 的模型保存和调用实例讲解

    我们通常采用tensorflow来训练,训练完之后应当保存模型,即保存模型的记忆(权重和偏置),这样就可以来进行人脸识别或语音识别了. 1.模型的保存 # 声明两个变量 v1 = tf.Variable(tf.random_normal([1, 2]), name="v1") v2 = tf.Variable(tf.random_normal([2, 3]), name="v2") init_op = tf.global_variables_initializer(

随机推荐