python机器学习库xgboost的使用

1.数据读取

利用原生xgboost库读取libsvm数据

 import xgboost as xgb
 data = xgb.DMatrix(libsvm文件)

使用sklearn读取libsvm数据

 from sklearn.datasets import load_svmlight_file
 X_train,y_train = load_svmlight_file(libsvm文件)

使用pandas读取完数据后在转化为标准形式

2.模型训练过程

1.未调参基线模型

使用xgboost原生库进行训练

import xgboost as xgb
from sklearn.metrics import accuracy_score

dtrain = xgb.DMatrix(f_train, label = l_train)
dtest = xgb.DMatrix(f_test, label = l_test)
param = {'max_depth':2, 'eta':1, 'silent':0, 'objective':'binary:logistic' }
num_round = 2
bst = xgb.train(param, dtrain, num_round)
train_preds = bst.predict(dtrain)
train_predictions = [round(value) for value in train_preds] #进行四舍五入的操作--变成0.1(算是设定阈值的符号函数)
train_accuracy = accuracy_score(l_train, train_predictions) #使用sklearn进行比较正确率
print ("Train Accuary: %.2f%%" % (train_accuracy * 100.0))

from xgboost import plot_importance #显示特征重要性
plot_importance(bst)#打印重要程度结果。
pyplot.show()

使用XGBClassifier进行训练

# 未设定早停止, 未进行矩阵变换
from xgboost import XGBClassifier
from sklearn.datasets import load_svmlight_file #用于直接读取svmlight文件形式, 否则就需要使用xgboost.DMatrix(文件名)来读取这种格式的文件
from sklearn.metrics import accuracy_score
from matplotlib import pyplot

num_round = 100
bst1 =XGBClassifier(max_depth=2, learning_rate=1, n_estimators=num_round, #弱分类树太少的话取不到更多的特征重要性
          silent=True, objective='binary:logistic')
bst1.fit(f_train, l_train)

train_preds = bst1.predict(f_train)
train_accuracy = accuracy_score(l_train, train_preds)
print ("Train Accuary: %.2f%%" % (train_accuracy * 100.0))

preds = bst1.predict(f_test)
test_accuracy = accuracy_score(l_test, preds)
print("Test Accuracy: %.2f%%" % (test_accuracy * 100.0))

from xgboost import plot_importance #显示特征重要性
plot_importance(bst1)#打印重要程度结果。
pyplot.show()

2.两种交叉验证方式

使用cross_val_score进行交叉验证

#利用model_selection进行交叉训练
from xgboost import XGBClassifier
from sklearn.model_selection import StratifiedKFold
from sklearn.model_selection import cross_val_score
from sklearn.metrics import accuracy_score
from matplotlib import pyplot

param = {'max_depth':2, 'eta':1, 'silent':0, 'objective':'binary:logistic' }
num_round = 100
bst2 =XGBClassifier(max_depth=2, learning_rate=0.1,n_estimators=num_round, silent=True, objective='binary:logistic')
bst2.fit(f_train, l_train)
kfold = StratifiedKFold(n_splits=10, random_state=7)
results = cross_val_score(bst2, f_train, l_train, cv=kfold)#对数据进行十折交叉验证--9份训练,一份测试
print(results)
print("CV Accuracy: %.2f%% (%.2f%%)" % (results.mean()*100, results.std()*100))

from xgboost import plot_importance #显示特征重要性
plot_importance(bst2)#打印重要程度结果。
pyplot.show()

使用GridSearchCV进行网格搜索

#使用sklearn中提供的网格搜索进行测试--找出最好参数,并作为默认训练参数
from xgboost import XGBClassifier
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import accuracy_score
from matplotlib import pyplot

params = {'max_depth':2, 'eta':0.1, 'silent':0, 'objective':'binary:logistic' }
bst =XGBClassifier(max_depth=2, learning_rate=0.1, silent=True, objective='binary:logistic')
param_test = {
 'n_estimators': range(1, 51, 1)
}
clf = GridSearchCV(estimator = bst, param_grid = param_test, scoring='accuracy', cv=5)# 5折交叉验证
clf.fit(f_train, l_train) #默认使用最优的参数

preds = clf.predict(f_test)

test_accuracy = accuracy_score(l_test, preds)
print("Test Accuracy of gridsearchcv: %.2f%%" % (test_accuracy * 100.0))

clf.cv_results_, clf.best_params_, clf.best_score_

3.早停止调参–early_stopping_rounds(查看的是损失是否变化)

#进行提早停止的单独实例
import xgboost as xgb
from xgboost import XGBClassifier
from sklearn.metrics import accuracy_score
from matplotlib import pyplot

param = {'max_depth':2, 'eta':1, 'silent':0, 'objective':'binary:logistic' }
num_round = 100
bst =XGBClassifier(max_depth=2, learning_rate=0.1, n_estimators=num_round, silent=True, objective='binary:logistic')
eval_set =[(f_test, l_test)]
bst.fit(f_train, l_train, early_stopping_rounds=10, eval_metric="error",eval_set=eval_set, verbose=True) #early_stopping_rounds--当多少次的效果差不多时停止  eval_set--用于显示损失率的数据 verbose--显示错误率的变化过程

# make prediction
preds = bst.predict(f_test)

test_accuracy = accuracy_score(l_test, preds)
print("Test Accuracy: %.2f%%" % (test_accuracy * 100.0))

4.多数据观察训练损失

#多参数顺
import xgboost as xgb
from xgboost import XGBClassifier
from sklearn.metrics import accuracy_score
from matplotlib import pyplot

num_round = 100
bst =XGBClassifier(max_depth=2, learning_rate=0.1, n_estimators=num_round, silent=True, objective='binary:logistic')
eval_set = [(f_train, l_train), (f_test, l_test)]
bst.fit(f_train, l_train, eval_metric=["error", "logloss"], eval_set=eval_set, verbose=True)

# make prediction
preds = bst.predict(f_test)
test_accuracy = accuracy_score(l_test, preds)
print("Test Accuracy: %.2f%%" % (test_accuracy * 100.0))

5.模型保存与读取

#模型保存
bst.save_model('demo.model')

#模型读取与预测
modelfile = 'demo.model'

# 1
bst = xgb.Booster({'nthread':8}, model_file = modelfile)

# 2

f_test1 = xgb.DMatrix(f_test) #尽量使用xgboost的自己的数据矩阵
ypred1 = bst.predict(f_test1)
train_predictions = [round(value) for value in ypred1]
test_accuracy1 = accuracy_score(l_test, train_predictions)
print("Test Accuracy: %.2f%%" % (test_accuracy1 * 100.0))

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • 机器学习python实战之手写数字识别

    看了上一篇内容之后,相信对K近邻算法有了一个清晰的认识,今天的内容--手写数字识别是对上一篇内容的延续,这里也是为了自己能更熟练的掌握k-NN算法. 我们有大约2000个训练样本和1000个左右测试样本,训练样本所在的文件夹是trainingDigits,测试样本所在的文件夹是testDigits.文本文件中是0~9的数字,但是是用二值图表示出来的,如图.我们要做的就是使用训练样本训练模型,并用测试样本来检测模型的性能. 首先,我们需要将文本文件中的内容转化为向量,因为图片大小是32*32,所以

  • Python机器学习库scikit-learn安装与基本使用教程

    本文实例讲述了Python机器学习库scikit-learn安装与基本使用.分享给大家供大家参考,具体如下: 引言 scikit-learn是Python的一个开源机器学习模块,它建立在NumPy,SciPy和matplotlib模块之上能够为用户提供各种机器学习算法接口,可以让用户简单.高效地进行数据挖掘和数据分析. scikit-learn安装 python 中安装许多模板库之前都有依赖关系,安装 scikit-learn 之前需要以下先决条件: Python(>= 2.6 or >= 3

  • python机器学习实战之树回归详解

    本文实例为大家分享了树回归的具体代码,供大家参考,具体内容如下 #-*- coding:utf-8 -*- #!/usr/bin/python ''''' 回归树 连续值回归预测 的 回归树 ''' # 测试代码 # import regTrees as RT RT.RtTreeTest() RT.RtTreeTest('ex0.txt') RT.RtTreeTest('ex2.txt') # import regTrees as RT RT.RtTreeTest('ex2.txt',ops=(

  • Python机器学习之决策树算法实例详解

    本文实例讲述了Python机器学习之决策树算法.分享给大家供大家参考,具体如下: 决策树学习是应用最广泛的归纳推理算法之一,是一种逼近离散值目标函数的方法,在这种方法中学习到的函数被表示为一棵决策树.决策树可以使用不熟悉的数据集合,并从中提取出一系列规则,机器学习算法最终将使用这些从数据集中创造的规则.决策树的优点为:计算复杂度不高,输出结果易于理解,对中间值的缺失不敏感,可以处理不相关特征数据.缺点为:可能产生过度匹配的问题.决策树适于处理离散型和连续型的数据. 在决策树中最重要的就是如何选取

  • python机器学习库常用汇总

    汇总整理一套Python网页爬虫,文本处理,科学计算,机器学习和数据挖掘的兵器谱. 1. Python网页爬虫工具集 一个真实的项目,一定是从获取数据开始的.无论文本处理,机器学习和数据挖掘,都需要数据,除了通过一些渠道购买或者下载的专业数据外,常常需要大家自己动手爬数据,这个时候,爬虫就显得格外重要了,幸好,Python提供了一批很不错的网页爬虫工具框架,既能爬取数据,也能获取和清洗数据,也就从这里开始了: 1.1 Scrapy 鼎鼎大名的Scrapy,相信不少同学都有耳闻,课程图谱中的很多课

  • python机器学习实战之最近邻kNN分类器

    K近邻法是有监督学习方法,原理很简单,假设我们有一堆分好类的样本数据,分好类表示每个样本都一个对应的已知类标签,当来一个测试样本要我们判断它的类别是, 就分别计算到每个样本的距离,然后选取离测试样本最近的前K个样本的标签累计投票, 得票数最多的那个标签就为测试样本的标签. 源代码详解: #-*- coding:utf-8 -*- #!/usr/bin/python # 测试代码 约会数据分类 import KNN KNN.datingClassTest1() 标签为字符串 KNN.datingC

  • python机器学习之贝叶斯分类

    一.贝叶斯分类介绍 贝叶斯分类器是一个统计分类器.它们能够预测类别所属的概率,如:一个数据对象属于某个类别的概率.贝叶斯分类器是基于贝叶斯定理而构造出来的.对分类方法进行比较的有关研究结果表明:简单贝叶斯分类器(称为基本贝叶斯分类器)在分类性能上与决策树和神经网络都是可比的.在处理大规模数据库时,贝叶斯分类器已表现出较高的分类准确性和运算性能.基本贝叶斯分类器假设一个指定类别中各属性的取值是相互独立的.这一假设也被称为:类别条件独立,它可以帮助有效减少在构造贝叶斯分类器时所需要进行的计算. 二.

  • python机器学习之决策树分类详解

    决策树分类与上一篇博客k近邻分类的最大的区别就在于,k近邻是没有训练过程的,而决策树是通过对训练数据进行分析,从而构造决策树,通过决策树来对测试数据进行分类,同样是属于监督学习的范畴.决策树的结果类似如下图: 图中方形方框代表叶节点,带圆边的方框代表决策节点,决策节点与叶节点的不同之处就是决策节点还需要通过判断该节点的状态来进一步分类. 那么如何通过训练数据来得到这样的决策树呢? 这里涉及要信息论中一个很重要的信息度量方式,香农熵.通过香农熵可以计算信息增益. 香农熵的计算公式如下: p(xi)

  • python机器学习库xgboost的使用

    1.数据读取 利用原生xgboost库读取libsvm数据 import xgboost as xgb data = xgb.DMatrix(libsvm文件) 使用sklearn读取libsvm数据 from sklearn.datasets import load_svmlight_file X_train,y_train = load_svmlight_file(libsvm文件) 使用pandas读取完数据后在转化为标准形式 2.模型训练过程 1.未调参基线模型 使用xgboost原生库

  • Python 机器学习库 NumPy入门教程

    NumPy是一个Python语言的软件包,它非常适合于科学计算.在我们使用Python语言进行机器学习编程的时候,这是一个非常常用的基础库. 本文是对它的一个入门教程. 介绍 NumPy是一个用于科技计算的基础软件包,它是Python语言实现的.它包含了: 强大的N维数组结构 精密复杂的函数 可集成到C/C++和Fortran代码的工具 线性代数,傅里叶变换以及随机数能力 除了科学计算的用途以外,NumPy也可被用作高效的通用数据的多维容器.由于它适用于任意类型的数据,这使得NumPy可以无缝和

  • Python机器学习库scikit-learn入门开发示例

    目录 1.数据采集和标记 2.特征选择 3.数据清洗 4.模型选择 5.模型训练 6.模型测试 7.模型保存与加载 8.实例 数据采集和标记 特征选择 模型训练 模型测试 模型保存与加载 1.数据采集和标记 先采集数据,再对数据进行标记.其中采集数据要就有代表性,以确保最终训练出来模型的准确性. 2.特征选择 选择特征的直观方法:直接使用图片的每个像素点作为一个特征. 数据保存为样本个数×特征个数格式的array对象.scikit-learn使用Numpy的array对象来表示数据,所有的图片数

  • python机器学习库scikit-learn:SVR的基本应用

    scikit-learn是python的第三方机器学习库,里面集成了大量机器学习的常用方法.例如:贝叶斯,svm,knn等. scikit-learn的官网 : http://scikit-learn.org/stable/index.html点击打开链接 SVR是支持向量回归(support vector regression)的英文缩写,是支持向量机(SVM)的重要的应用分支. scikit-learn中提供了基于libsvm的SVR解决方案. PS:libsvm是台湾大学林智仁教授等开发设

  • pyCaret效率倍增开源低代码的python机器学习工具

    目录 PyCaret 时间序列模块 加载数据 初始化设置 统计测试 探索性数据分析 模型训练和选择 保存模型 PyCaret 是一个开源.低代码的 Python 机器学习库,可自动执行机器学习工作流.它是一种端到端的机器学习和模型管理工具,可以以指数方式加快实验周期并提高您的工作效率.欢迎收藏学习,喜欢点赞支持,文末提供技术交流群. 与其他开源机器学习库相比,PyCaret 是一个替代的低代码库,可用于仅用几行代码替换数百行代码. 这使得实验速度和效率呈指数级增长. PyCaret 本质上是围绕

  • Python 数据处理库 pandas 入门教程基本操作

    pandas是一个Python语言的软件包,在我们使用Python语言进行机器学习编程的时候,这是一个非常常用的基础编程库.本文是对它的一个入门教程. pandas提供了快速,灵活和富有表现力的数据结构,目的是使"关系"或"标记"数据的工作既简单又直观.它旨在成为在Python中进行实际数据分析的高级构建块. 入门介绍 pandas适合于许多不同类型的数据,包括: 具有异构类型列的表格数据,例如SQL表格或Excel数据 有序和无序(不一定是固定频率)时间序列数据.

  • Python 数据处理库 pandas进阶教程

    前言 本文紧接着前一篇的入门教程,会介绍一些关于pandas的进阶知识.建议读者在阅读本文之前先看完pandas入门教程. 同样的,本文的测试数据和源码可以在这里获取: Github:pandas_tutorial. 数据访问 在入门教程中,我们已经使用过访问数据的方法.这里我们再集中看一下. 注:这里的数据访问方法既适用于Series,也适用于DataFrame. 基础方法:[]和. 这是两种最直观的方法,任何有面向对象编程经验的人应该都很容易理解.下面是一个代码示例: # select_da

  • Python常用库大全及简要说明

    环境管理 管理 Python 版本和环境的工具 p:非常简单的交互式 python 版本管理工具.官网 pyenv:简单的 Python 版本管理工具.官网 Vex:可以在虚拟环境中执行命令.官网 virtualenv:创建独立 Python 环境的工具.官网 virtualenvwrapper:virtualenv 的一组扩展.官网 buildout:在隔离环境初始化后使用声明性配置管理.官网 包管理 管理包和依赖的工具. pip:Python 包和依赖关系管理工具.官网 pip-tools:

随机推荐