C/C++经典算法之约瑟夫问题详解

目录
  • 什么是约瑟夫问题?
  • 方法一:数组
  • 方法二:环形链表
  • 方法三:递归
  • 总结

什么是约瑟夫问题?

约瑟夫问题:n个人围成一圈,初始编号从1~n排列,从约定编号为x的人开始报数,数到第m个人出圈,接着又从1开始报数,报到第m个数的人又退出圈,以此类推,最后圈内只剩下一个人,这个人就是赢家,求出赢家的编号。

是不是有点点复杂,其实该问题归结为模拟类型的算法题,根据题目要求模拟即可。

我说,一行代码解决约瑟夫问题!

???我去

别着急,我们一步一步学习

方法一:数组

在第一次遇到这个题的时候,我是用数组做的,我猜绝大多数人也都知道怎么做。方法是这样的:

用一个数组来存放 1,2,3 ... n 这 n 个编号,如图(这里我们假设n = 6, m = 3)

然后不停着遍历数组,对于被选中的编号,我们就做一个标记,例如编号 arr[2] = 3 被选中了,那么我们可以做一个标记,例如让 arr[2] = -1,来表示 arr[2] 存放的编号已经出局的了。

然后就按照这种方法,不停着遍历数组,不停着做标记,直到数组中只有一个元素是非 -1 的,这样,剩下的那个元素就是我们要找的元素了。我演示一下吧:

这种方法简单吗?思路简单,但是编码却没那么简单,临界条件特别多,每次遍历到数组最后一个元素的时候,还得重新设置下标为 0,并且遍历的时候还得判断该元素时候是否是 -1。用这种数组的方式做,千万不要觉得很简单,编码这个过程还是挺考验人的。

这种做法的时间复杂度是 O(n * m), 空间复杂度是 O(n);

下面给出数组方法的参考代码:

#include<algorithm>
#include<iostream>
using namespace std;
int main(){
	int a[1001]={0}; //初始化化数组作为环
	int n,m;//n代表总的人数,m代表报数到几退出
	cin>>n>>m;
	int count=0;//记录退出的个数
	int k=-1;//这里假定开始为第一个人,下标为0,编号为1,如需从编号x开始,则k=x-2
	while(count<n-1){  //总共需要退出n-1个人
		int i=0;//记录当前报数编号
		while(i<m){
			k=(k+1)%n; //循环处理下标
			if(a[k]==0){
				i++;
				if(i==m){
					a[k]=-1;
					count++;
				}
			}
		}
	}
	for(int i=0;i<n;i++){
		if(a[i]==0){
			printf("%d\n",i+1);
			break;
		}
	}
	return 0;
}

方法二:环形链表

学过链表的人,估计都会用链表来处理约瑟夫环问题,用链表来处理其实和上面处理的思路差不多,只是用链表来处理的时候,对于被选中的编号,不再是做标记,而是直接移除,因为从链表移除一个元素的时间复杂度很低,为 O(1)。当然,上面数组的方法你也可以采用移除的方式,不过数组移除的时间复杂度为 O(n)。所以采用链表的解决方法如下:

1、先创建一个环形链表来存放元素:

2、然后一边遍历链表一遍删除,直到链表只剩下一个节点,我这里就不全部演示了

感兴趣的友友可以自己实现以下代码,这里就不放了

下面我们来看看,是如何一行代码实现约瑟夫问题!

方法三:递归

其实这道题还可以用递归来解决,递归是思路是每次我们删除了某一个人之后,我们就对这些人重新编号,然后我们的难点就是找出删除前和删除后编号的映射关系

我们定义递归函数 f(n,m) 的返回结果是存活士兵的编号,显然当 n = 1 时,f(n, m) = 1。假如我们能够找出 f(n,m) 和 f(n-1,m) 之间的关系的话,我们就可以用递归的方式来解决了。我们假设人员数为 n, 报数到 m 的人就自杀。则刚开始的编号为

… 1 ... m - 2

m - 1

m

m + 1

m + 2 ... n …

进行了一次删除之后,删除了编号为 m 的节点。删除之后,就只剩下 n - 1 个节点了,删除前和删除之后的编号转换关系为:

删除前 --- 删除后

… --- …

m - 2 --- n - 2

m - 1 --- n - 1

m ---- 无(因为编号被删除了)

m + 1 --- 1(因为下次就从这里报数了)

m + 2 ---- 2

… ---- …

新的环中只有 n - 1 个节点。且删除前编号为 m + 1, m + 2, m + 3 的节点成了删除后编号为 1, 2, 3 的节点。

假设 old 为删除之前的节点编号, new 为删除了一个节点之后的编号,则 old 与 new 之间的关系为 old = (new + m - 1) % n + 1。

注:有些人可能会疑惑为什么不是 old = (new + m ) % n 呢?主要是因为编号是从 1 开始的,而不是从 0 开始的。如果 new + m == n的话,会导致最后的计算结果为 old = 0。所以 old = (new + m - 1) % n + 1. 这样,我们就得出 f(n, m) 与 f(n - 1, m)之间的关系了,而 f(1, m) = 1.所以我们可以采用递归的方式来做。

代码如下:

int f(int n, int m){
    return n == 1 ? n : (f(n - 1, m) + m - 1) % n + 1;
}

卧槽,以后有人让你手写约瑟夫问题,你就扔这一行代码给它。

总结

到此这篇关于C/C++经典算法之约瑟夫问题的文章就介绍到这了,更多相关C/C++约瑟夫问题内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • C语言约瑟夫环的实现

    C语言约瑟夫环的实现 一.典故: 据说著名犹太历史学家 Josephus有过以下的故事:在罗马人占领乔塔帕特后,39 个犹太人与Josephus及他的朋友躲到一个洞中,39个犹太人决定宁愿死也不要被敌人抓到,于是商量了一个自杀方式: 41个人排成一个圆圈,由第1个人 开始报数,每数到第3人该人就必须自杀,然后再由下一个重新报数,直到所有人都自杀身亡为止.然而Josephus 和他的朋友并不想遵从,Josephus要 他的朋友先假装遵从,他将朋友与自己安排在第16个与第31个位置,于是逃过了这场死

  • C++ 中约瑟夫环替换计数器m(数组解决)

    C++ 中约瑟夫环替换计数器m(数组解决) 题目描述: 输入一个由随机数组成的数列(数列中每个数均是大于0的整数,长度已知),和初始计数值m.从数列首位置开始计数,计数到m后,将数列该位置数值替换计数值m,并将数列该位置数值出列,然后从下一位置从新开始计数,直到数列所有数值出列为止.如果计数到达数列尾段,则返回数列首位置继续计数.请编程实现上述计数过程,同时输出数值出列的顺序 比如: 输入的随机数列为:3,1,2,4,初始计数值m=7,从数列首位置开始计数(数值3所在位置) 第一轮计数出列数字为

  • 约瑟夫环问题(数组法)c语言实现

    问题说明这个问题是以弗拉维奥·约瑟夫斯命名的,它是1世纪的一名犹太历史学家.他在自己的日记中写道,他和他的40个战友被罗马军队包围在洞中.他们讨论是自杀还是被俘,最终决定自杀,并以抽签的方式决定谁杀掉谁.约瑟夫斯和另外一个人是最后两个留下的人.约瑟夫斯说服了那个人,他们将向罗马军队投降,不再自杀.约瑟夫斯把他的存活归因于运气或天意,他不知道是哪一个机智的约瑟夫! 有N个编号为1~N的人围成一圈,现在每隔两个人(比如:1.4 之间隔了2.3)就将一个人淘汰出去,问最后剩下的是编号为几的人? 算法代

  • C++ 中循环链表和约瑟夫环

    循环链表和约瑟夫环 循环链表的实现 单链表只有向后结点,当单链表的尾链表不指向NULL,而是指向头结点时候,形成了一个环,成为单循环链表,简称循环链表.当它是空表,向后结点就只想了自己,这也是它与单链表的主要差异,判断node->next是否等于head. 代码实现分为四部分: 初始化 插入 删除 定位寻找 代码实现: void ListInit(Node *pNode){ int item; Node *temp,*target; cout<<"输入0完成初始化"&

  • 详解基于C++实现约瑟夫环问题的三种解法

    目录 一.前言 二.循环链表模拟 三.有序集合模拟 四.递归公式解决 五.结语 一.前言 什么是约瑟夫环问题? 约瑟夫环问题在不同平台被"优化"描述的不一样,例如在牛客剑指offer叫孩子们的游戏,还有叫杀人游戏,点名--最直接的感觉还是力扣上剑指offer62的描述:圆圈中最后剩下的数字. 问题描述: 0,1,···,n-1这n个数字排成一个圆圈,从数字0开始,每次从这个圆圈里删除第m个数字(删除后从下一个数字开始计数).求出这个圆圈里剩下的最后一个数字. 例如,0.1.2.3.4这

  • 详解约瑟夫环问题及其相关的C语言算法实现

    约瑟夫环问题 N个人围成一圈顺序编号,从1号开始按1.2.3......顺序报数,报p者退出圈外,其余的人再从1.2.3开始报数,报p的人再退出圈外,以此类推.   请按退出顺序输出每个退出人的原序号 算法思想 用数学归纳法递推. 无论是用链表实现还是用数组实现都有一个共同点:要模拟整个游戏过程,不仅程序写起来比较烦,而且时间复杂度高达O(nm),若nm非常大,无法在短时间内计算出结果.我们注意到原问题仅仅是要求出最后的胜利者的序号,而不是要读者模拟整个过程.因此如果要追求效率,就要打破常规,实

  • C语言基于循环链表解决约瑟夫环问题的方法示例

    本文实例讲述了C语言基于循环链表解决约瑟夫环问题的方法.分享给大家供大家参考,具体如下: 概述: 约瑟夫环问题,是一个经典的循环链表问题,题意是:已知 n 个人(以编号1,2,3,-,n分别表示)围坐在一张圆桌周围,从编号为 k 的人开始顺时针报数,数到 m 的那个人出列:他的下一个人又从 1 还是顺时针开始报数,数到 m 的那个人又出列:依次重复下去,要求找到最后出列的那个人. 例如有 5 个人,要求从编号为 3 的人开始,数到 2 的那个人出列: 出列顺序依次为: 编号为 3 的人开始数 1

  • C++循环链表之约瑟夫环的实现方法

    本文实例形式展示了C++实现循环链表中约瑟夫环的方法,分享给大家供大家参考之用.具体方法如下: 主要功能代码如下: #include <iostream> using namespace std; typedef struct student { int data; struct student* next; }node,*LinkList; //约瑟夫环 void printfList(LinkList head){ LinkList p=head; if (head!=NULL) { do

  • 约瑟夫问题的Python和C++求解方法

    么是约瑟夫问题? 约瑟夫问题是一个有趣的数学游戏,游戏规则如下: 1.N个人围成一个圈,编号从1开始,依次到N. 2.编号为M的游戏参与者开始报数,报数从1开始,后面的人报数接龙,直到K为止,报数为K的人将出局. 3.出局者的下一个玩家接着从1开始报数,如此循环,直到剩下一个玩家时游戏结束,这个玩家就是游戏获胜者. 那么问题来了,哪个编号是游戏获胜者呢? 下面通过简单的几行python代码来解决这个问题: #!/usr/bin/env python # Joseph Problem def jo

  • C++ 约瑟夫环的实例代码

    C++ 约瑟夫环的实例代码 约瑟夫环是一个数学的应用问题:已知n个人(以编号1,2,3...n分别表示)围坐在一张圆桌周围.从编号为k的人开始报数,数到m的那个人出列:他的下一个人又从1开始报数,数到m的那个人又出列:依此规律重复下去,直到圆桌周围的人全部出列. 分析:有n个人,要想所有的人都退出去,只有每个人喊到m,才可以退完,所以可以算出,n*m为所有人总共报数的总次数. 代码: /* * 约瑟夫出圈 */ #include <stdio.h> int main() { char peo[

随机推荐