Python&Matlab实现灰狼优化算法的示例代码

目录
  • 1 灰狼优化算法基本思想
  • 2 灰狼捕食猎物过程
    • 2.1 社会等级分层
    • 2.2 包围猎物
    • 2.3 狩猎
    • 2.4 攻击猎物
    • 2.5 寻找猎物
  • 3 实现步骤及程序框图
    • 3.1 步骤
    • 3.2 程序框图
  • 4 Python代码实现
  • 5 Matlab实现

1 灰狼优化算法基本思想

灰狼优化算法是一种群智能优化算法,它的独特之处在于一小部分拥有绝对话语权的灰狼带领一群灰狼向猎物前进。在了解灰狼优化算法的特点之前,我们有必要了解灰狼群中的等级制度。

灰狼群一般分为4个等级:处于第一等级的灰狼用α表示,处于第二阶级的灰狼用β表示,处于第三阶段的灰狼用δ表示,处于第四等级的灰狼用ω表示。按照上述等级的划分,灰狼α对灰狼β、δ和ω有绝对的支配权;灰狼ω对灰狼δ和ω有绝对的支配权;灰狼δ对灰狼ω有绝对的支配权。

2 灰狼捕食猎物过程

GWO 优化过程包含了灰狼的社会等级分层、跟踪、包围和攻击猎物等步骤,其步骤具体情况如下所示。

2.1 社会等级分层

当设计 GWO 时,首先需构建灰狼社会等级层次模型。计算种群每个个体的适应度,将狼群中适应度最好的三匹灰狼依次标记为α、β、δ而剩下的灰狼标记为ω 。也就是说,灰狼群体中的社会等级从高往低排列依次为α、β、δ及 ω。GWO 的优化过程主要由每代种群中的最好三个解(即 α、β、δ)来指导完成。

2.2 包围猎物

灰狼群体通过以下几个公式逐渐接近并包围猎物:

式中,t是当前的迭代代数,A和C是系数向量,Xp和X分别是猎物的位置向量和灰狼的位置向量。A和C的计算公式如下:

式中,a是收敛因子,随着迭代次数从2线性减小到0,r1和r 2服从[ 0,1]之间的均匀分布。

2.3 狩猎

狼群中其他灰狼个体Xi根据α、β和百的位置Xa、XB和Xo来更新各自的位置:

式中,Da,Dβ和D6分别表示a,β和5与其他个体间的距离;Xa,Xβ和X6分别代表a,β和5的当前位置;C1,C2,C3是随机向量,X是当前灰狼的位置。

灰狼个体的位置更新公式如下:

2.4 攻击猎物

构建攻击猎物模型的过程中,根据2)中的公式,a值的减少会引起 A 的值也随之波动。换句话说,A 是一个在区间[-a,a](备注:原作者的第一篇论文里这里是[-2a,2a],后面论文里纠正为[-a,a])上的随机向量,其中a在迭代过程中呈线性下降。当 A 在[-1,1]区间上时,则捜索代理(Search Agent)的下一时刻位置可以在当前灰狼与猎物之间的任何位置上。

2.5 寻找猎物

灰狼主要依赖α、β、δ的信息来寻找猎物。它们开始分散地去搜索猎物位置信息,然后集中起来攻击猎物。对于分散模型的建立,通过|A|>1使其捜索代理远离猎物,这种搜索方式使 GWO 能进行全局搜索。GWO 算法中的另一个搜索系数是C。从2.2中的公式可知,C向量是在区间范围[0,2]上的随机值构成的向量,此系数为猎物提供了随机权重,以便増加(|C|>1)或减少(|C|<1)。这有助于 GWO 在优化过程中展示出随机搜索行为,以避免算法陷入局部最优。值得注意的是,C并不是线性下降的,C在迭代过程中是随机值,该系数有利于算法跳出局部,特别是算法在迭代的后期显得尤为重要。

3 实现步骤及程序框图

3.1 步骤

Step1:种群初始化:包括种群数量N,最大迭代次数Maxlter,调控参数a,A,C.

Step2:根据变量的上下界来随机初始化灰狼个体的位置X。

Step3:计算每一头狼的适应度值,并将种群中适应度值最优的狼的位置信息保存Xα,将种群中适应度值次优的狼的位置信息保存为Xβ,将种群中适应度第三优的灰狼的位置信息保存为Xγ

Step4:更新灰狼个体X的位置。

step5:更新参数a,A和C。

Step6:计算每一头灰狼的适应度值,并更新三匹头狼的最优位置。

Step7:判断是否到达最大迭代次数Maxlter,若满足则算法停止并返回Xa的值作为最终得到的最优解,否则转到Step4。

3.2 程序框图

4 Python代码实现

#=======导入线管库======
import random
import numpy

#完整代码见微信公众号:电力系统与算法之美
#输入关键字:灰狼算法

def GWO(objf, lb, ub, dim, SearchAgents_no, Max_iter):

    #===初始化 alpha, beta, and delta_pos=======
    Alpha_pos = numpy.zeros(dim)  # 位置.形成30的列表
    Alpha_score = float("inf")  # 这个是表示“正负无穷”,所有数都比 +inf 小;正无穷:float("inf"); 负无穷:float("-inf")

    Beta_pos = numpy.zeros(dim)
    Beta_score = float("inf")

    Delta_pos = numpy.zeros(dim)
    Delta_score = float("inf")  # float() 函数用于将整数和字符串转换成浮点数。

    #====list列表类型=============
    if not isinstance(lb, list):  # 作用:来判断一个对象是否是一个已知的类型。 其第一个参数(object)为对象,第二个参数(type)为类型名,若对象的类型与参数二的类型相同则返回True
        lb = [lb] * dim  # 生成[100,100,.....100]30个
    if not isinstance(ub, list):
        ub = [ub] * dim

    #========初始化所有狼的位置===================
    Positions = numpy.zeros((SearchAgents_no, dim))
    for i in range(dim):  # 形成5*30个数[-100,100)以内
        Positions[:, i] = numpy.random.uniform(0, 1, SearchAgents_no) * (ub[i] - lb[i]) + lb[
            i]  # 形成[5个0-1的数]*100-(-100)-100
    Convergence_curve = numpy.zeros(Max_iter)

    #========迭代寻优=====================
    for l in range(0, Max_iter):  # 迭代1000
        for i in range(0, SearchAgents_no):  # 5
            #====返回超出搜索空间边界的搜索代理====
            for j in range(dim):  # 30
                Positions[i, j] = numpy.clip(Positions[i, j], lb[j], ub[
                    j])  # clip这个函数将将数组中的元素限制在a_min(-100), a_max(100)之间,大于a_max的就使得它等于 a_max,小于a_min,的就使得它等于a_min。

        #===========以上的循环里,Alpha、Beta、Delta===========
        a = 2 - l * ((2) / Max_iter);  #   a从2线性减少到0

        for i in range(0, SearchAgents_no):
            for j in range(0, dim):
                r1 = random.random()  # r1 is a random number in [0,1]主要生成一个0-1的随机浮点数。
                r2 = random.random()  # r2 is a random number in [0,1]

                A1 = 2 * a * r1 - a;  # Equation (3.3)
                C1 = 2 * r2;  # Equation (3.4)
                # D_alpha表示候选狼与Alpha狼的距离
                D_alpha = abs(C1 * Alpha_pos[j] - Positions[
                    i, j]);  # abs() 函数返回数字的绝对值。Alpha_pos[j]表示Alpha位置,Positions[i,j])候选灰狼所在位置
                X1 = Alpha_pos[j] - A1 * D_alpha;  # X1表示根据alpha得出的下一代灰狼位置向量

                r1 = random.random()
                r2 = random.random()

                A2 = 2 * a * r1 - a;  #
                C2 = 2 * r2;

                D_beta = abs(C2 * Beta_pos[j] - Positions[i, j]);
                X2 = Beta_pos[j] - A2 * D_beta;

                r1 = random.random()
                r2 = random.random()

                A3 = 2 * a * r1 - a;
                C3 = 2 * r2;

                D_delta = abs(C3 * Delta_pos[j] - Positions[i, j]);
                X3 = Delta_pos[j] - A3 * D_delta;

                Positions[i, j] = (X1 + X2 + X3) / 3  # 候选狼的位置更新为根据Alpha、Beta、Delta得出的下一代灰狼地址。

        Convergence_curve[l] = Alpha_score;

        if (l % 1 == 0):
            print(['迭代次数为' + str(l) + ' 的迭代结果' + str(Alpha_score)]);  # 每一次的迭代结果

#========函数==========
def F1(x):
    s=numpy.sum(x**2);
    return s

#===========主程序================
func_details = ['F1', -100, 100, 30]
function_name = func_details[0]
Max_iter = 1000#迭代次数
lb = -100#下界
ub = 100#上届
dim = 30#狼的寻值范围
SearchAgents_no = 5#寻值的狼的数量
x = GWO(F1, lb, ub, dim, SearchAgents_no, Max_iter)
 

5 Matlab实现

% 主程序 GWO
clear
close all
clc

%%完整代码见微信公众号:电力系统与算法之美

%输入关键字:灰狼算法

SearchAgents_no = 30 ; % 种群规模
dim = 10 ; % 粒子维度
Max_iter = 1000 ; % 迭代次数
ub = 5 ;
lb = -5 ;

%% 初始化三匹头狼的位置
Alpha_pos=zeros(1,dim);
Alpha_score=inf; 

Beta_pos=zeros(1,dim);
Beta_score=inf; 

Delta_pos=zeros(1,dim);
Delta_score=inf; 

Convergence_curve = zeros(Max_iter,1);

%% 开始循环
for l=1:Max_iter
    for i=1:size(Positions,1)  

       %% 返回超出搜索空间边界的搜索代理
        Flag4ub=Positions(i,:)>ub;
        Flag4lb=Positions(i,:)<lb;
        Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;               

        %% 计算每个搜索代理的目标函数
        fitness=sum(Positions(i,:).^2);

        %% 更新 Alpha, Beta, and Delta
        if fitness<Alpha_score
            Alpha_score=fitness; % Update alpha
            Alpha_pos=Positions(i,:);
        end

        if fitness>Alpha_score && fitness<Beta_score
            Beta_score=fitness; % Update beta
            Beta_pos=Positions(i,:);
        end

        if fitness>Alpha_score && fitness>Beta_score && fitness<Delta_score
            Delta_score=fitness; % Update delta
            Delta_pos=Positions(i,:);
        end
    end

    a=2-l*((2)/Max_iter); % a decreases linearly fron 2 to 0

    %% 更新搜索代理的位置,包括omegas
    for i=1:size(Positions,1)
        for j=1:size(Positions,2)     

            r1=rand(); % r1 is a random number in [0,1]
            r2=rand(); % r2 is a random number in [0,1]

            A1=2*a*r1-a; % Equation (3.3)
            C1=2*r2; % Equation (3.4)

            D_alpha=abs(C1*Alpha_pos(j)-Positions(i,j)); % Equation (3.5)-part 1
            X1=Alpha_pos(j)-A1*D_alpha; % Equation (3.6)-part 1

            r1=rand();
            r2=rand();

            A2=2*a*r1-a; % Equation (3.3)
            C2=2*r2; % Equation (3.4)

            D_beta=abs(C2*Beta_pos(j)-Positions(i,j)); % Equation (3.5)-part 2
            X2=Beta_pos(j)-A2*D_beta; % Equation (3.6)-part 2       

            r1=rand();
            r2=rand(); 

            A3=2*a*r1-a; % Equation (3.3)
            C3=2*r2; % Equation (3.4)

            D_delta=abs(C3*Delta_pos(j)-Positions(i,j)); % Equation (3.5)-part 3
            X3=Delta_pos(j)-A3*D_delta; % Equation (3.5)-part 3             

            Positions(i,j)=(X1+X2+X3)/3;% Equation (3.7)

        end
    end

    Convergence_curve(l)=Alpha_score;
    disp(['Iteration = ' num2str(l)  ', Evaluations = ' num2str(Alpha_score)]);

end
%========可视化==============
figure('unit','normalize','Position',[0.3,0.35,0.4,0.35],'color',[1 1 1],'toolbar','none')
%% 目标空间
subplot(1,2,1);
x = -5:0.1:5;y=x;
L=length(x);
f=zeros(L,L);
for i=1:L
    for j=1:L
       f(i,j) = x(i)^2+y(j)^2;
    end
end
surfc(x,y,f,'LineStyle','none');
xlabel('x_1');
ylabel('x_2');
zlabel('F')
title('Objective space')
%% 狼群算法
subplot(1,2,2);
semilogy(Convergence_curve,'Color','r','linewidth',1.5)
title('Convergence_curve')
xlabel('Iteration');
ylabel('Best score obtained so far');

axis tight
grid on
box on
legend('GWO')
display(['The best solution obtained by GWO is : ', num2str(Alpha_pos)]);
display(['The best optimal value of the objective funciton found by GWO is : ', num2str(Alpha_score)]);
 

以上就是Python&Matlab实现灰狼优化算法的示例代码的详细内容,更多关于Python Matlab灰狼优化算法的资料请关注我们其它相关文章!

(0)

相关推荐

  • Python和Matlab实现蝙蝠算法的示例代码

    目录 1前言 2 蝙蝠算法原理细讲 3 详细步骤 4Python实现 4.1代码 4.2结果 5Matlab实现 5.1 代码 5.2 结果 5.3 展望 1 前言 蝙蝠算法是2010年杨教授基于群体智能提出的启发式搜索算法,是一种搜索全局最优解的有效方法.该算法基于迭代优化,初始化为一组随机解,然后迭代搜寻最优解,且在最优解周围通过随机飞行产生局部新解,加强局部搜索速度.该算法具有实现简单.参数少等特点. 该算法主要用于目标函数寻优,基于蝙蝠种群利用产生的声波搜索猎物和控制飞行方向的特征来实现

  • python人工智能深度学习算法优化

    目录 1.SGD 2.SGDM 3.Adam 4.Adagrad 5.RMSProp 6.NAG 1.SGD 随机梯度下降 随机梯度下降和其他的梯度下降主要区别,在于SGD每次只使用一个数据样本,去计算损失函数,求梯度,更新参数.这种方法的计算速度快,但是下降的速度慢,可能会在最低处两边震荡,停留在局部最优. 2.SGDM SGM with Momentum:动量梯度下降 动量梯度下降,在进行参数更新之前,会对之前的梯度信息,进行指数加权平均,然后使用加权平均之后的梯度,来代替原梯度,进行参数的

  • Python&Matlab实现蚂蚁群算法求解最短路径问题的示例

    目录 1知识点 1.1 蚁群算法步骤 1.2 蚁群算法程序 2蚂蚁算法求解最短路径问题——Python实现 2.1源码实现 2.2 ACA_TSP实现 3 蚂蚁算法求解最短路径问题——Matlab实现 3.1流程图 3.2代码实现 3.3结果 1 知识点 详细知识点见:智能优化算法—蚁群算法(Python实现) 我们这一节知识点只讲蚁群算法求解最短路径步骤及流程. 1.1 蚁群算法步骤 设蚂蚁的数量为m,地点的数量为n,地点i与地点j之间相距Dij,t时刻地点i与地点j连接的路径上的信息素浓度为

  • Python&Matlab实现灰狼优化算法的示例代码

    目录 1 灰狼优化算法基本思想 2 灰狼捕食猎物过程 2.1 社会等级分层 2.2 包围猎物 2.3 狩猎 2.4 攻击猎物 2.5 寻找猎物 3 实现步骤及程序框图 3.1 步骤 3.2 程序框图 4 Python代码实现 5 Matlab实现 1 灰狼优化算法基本思想 灰狼优化算法是一种群智能优化算法,它的独特之处在于一小部分拥有绝对话语权的灰狼带领一群灰狼向猎物前进.在了解灰狼优化算法的特点之前,我们有必要了解灰狼群中的等级制度. 灰狼群一般分为4个等级:处于第一等级的灰狼用α表示,处于第

  • 基于Matlab实现嗅觉优化算法的示例代码

    目录 1.概述 2.37 个 CEC 基准测试函数代码 3.F1 Matlab代码仿真 1.概述 嗅觉剂优化是一种新颖的优化算法,旨在模仿气味分子源尾随的药剂的智能行为.该概念分为三个阶段(嗅探,尾随和随机)是独特且易于实现的.此上传包含 SAO 在 37 个 CEC 基准测试函数上的实现. 2.37 个 CEC 基准测试函数代码 function [lb,ub,dim,fobj] = Select_Function(F) switch F case 'F1' %Admijan fobj = @

  • 基于Matlab实现野狗优化算法的示例代码

    目录 1.概述 2.捕食过程的数学模型 2.1 种群初始化 2.2 群体攻击过程 2.3 迫害攻击过程 2.4 野狗的存活率 3.Matlab代码实现 3.1 代码 3.2 结果 1.概述 野狗优化算法(Dingo Optimization Algorithm, DOA)模仿澳大利亚野狗的社交行为.DOA算法的灵感来源于野狗的狩猎策略,即迫害攻击.分组策略和食腐行为.为了提高该方法的整体效率和性能,在DOA中制定了三种与四条规则相关联的搜索策略,这些策略和规则在搜索空间的强化(开发)和多样化(探

  • 基于Matlab实现鲸鱼优化算法的示例代码

    目录 1.鲸鱼优化算法建模 1.1 包围猎物 1.2 螺旋狩猎 1.3 搜索猎物 1.4 算法流程图 2.Matlab代码实现 2.1 结果 2.2 代码 1.鲸鱼优化算法建模 鲸鱼优化算法(WOA)是澳大利亚学者Mirjaili等于2016年提出的群体智能优化算法,根据座头鲸的捕猎行为实现优化搜索的目的.其中,每个鲸鱼可以看作一个粒子,每个粒子作为不同的决策变量.WOA的实现过程主要包括包围猎物.螺旋狩猎和随机搜索3个阶段,其数学模型如下: 1.1 包围猎物 1.2 螺旋狩猎 1.3 搜索猎物

  • Matlab实现黑洞优化算法的示例代码

    目录 前言 1.概述 1.1黑洞算法 1.2黑洞搜索优化算法 1.3黑洞搜索算法的实现过程 2.Matlab代码实现 2.1主函数 2.2目标函数 2.3黑洞优化算法 3.结果展现 前言 应用的领域很多. 1.概述 1.1黑洞算法 根据黑洞现象原理首次提出BH 算法,它在传统PSO基础上引入了新的机制,有效地提高了收敛速度并防止了陷入局部极值的情况发生;但是该方法却没有提及如何确定黑洞边界和如何处理吸收星体的问题. Hatamlou BH算法进行了完善,让其更加接近于黑洞的自然现状,使其具有黑洞

  • Python实现12种降维算法的示例代码

    目录 为什么要进行数据降维 数据降维原理 主成分分析(PCA)降维算法 其它降维算法及代码地址 1.KPCA(kernel PCA) 2.LDA(Linear Discriminant Analysis) 3.MDS(multidimensional scaling) 4.ISOMAP 5.LLE(locally linear embedding) 6.t-SNE 7.LE(Laplacian Eigenmaps) 8.LPP(Locality Preserving Projections) 网

  • Python实现异常检测LOF算法的示例代码

    目录 背景 LOF算法 1.k邻近距离 2.k距离领域 3.可达距离 4.局部可达密度 5.局部异常因子 LOF算法流程 LOF优缺点 Python实现LOF PyOD Sklearn 大家好,我是东哥. 本篇和大家介绍一个经典的异常检测算法:局部离群因子(Local Outlier Factor),简称LOF算法. 背景 Local Outlier Factor(LOF)是基于密度的经典算法(Breuning et. al. 2000), 文章发表于 SIGMOD 2000, 到目前已经有 3

  • Python实现孤立随机森林算法的示例代码

    目录 1 简介 2 孤立随机森林算法 2.1 算法概述 2.2 原理介绍 2.3 算法步骤 3 参数讲解 4 Python代码实现 5 结果 1 简介 孤立森林(isolation Forest)是一种高效的异常检测算法,它和随机森林类似,但每次选择划分属性和划分点(值)时都是随机的,而不是根据信息增益或基尼指数来选择. 2 孤立随机森林算法 2.1 算法概述 Isolation,意为孤立/隔离,是名词,其动词为isolate,forest是森林,合起来就是“孤立森林”了,也有叫“独异森林”,好

  • Python+OpenCV实现分水岭分割算法的示例代码

    目录 前言 1.使用分水岭算法进行分割 2.Watershed与random walker分割对比 前言 分水岭算法是用于分割的经典算法,在提取图像中粘连或重叠的对象时特别有用,例如下图中的硬币. 使用传统的图像处理方法,如阈值和轮廓检测,我们将无法从图像中提取每一个硬币,但通过利用分水岭算法,我们能够检测和提取每一个硬币. 在使用分水岭算法时,我们必须从用户定义的标记开始.这些标记可以通过点击手动定义,或者我们可以使用阈值和/或形态学操作等方法自动或启发式定义它们. 基于这些标记,分水岭算法将

  • Python 实现大整数乘法算法的示例代码

    我们平时接触的长乘法,按位相乘,是一种时间复杂度为 O(n ^ 2) 的算法.今天,我们来介绍一种时间复杂度为 O (n ^ log 3) 的大整数乘法(log 表示以 2 为底的对数). 介绍原理 karatsuba 算法要求乘数与被乘数要满足以下几个条件,第一,乘数与被乘数的位数相同:第二,乘数与被乘数的位数应为  2 次幂,即为 2 ^ 2,  2 ^ 3, 2 ^ 4, 2 ^ n 等数值. 下面我们先来看几个简单的例子,并以此来了解 karatsuba 算法的使用方法. 两位数相乘 我

随机推荐