Netty分布式客户端接入流程初始化源码分析
目录
- 前文概述:
- 第一节:初始化NioSockectChannelConfig
- 创建channel
- 跟到其父类DefaultChannelConfig的构造方法中
- 再回到AdaptiveRecvByteBufAllocator的构造方法中
- 继续跟到ChannelMetadata的构造方法中
- 回到DefaultChannelConfig的构造方法
前文概述:
之前的章节学习了server启动以及eventLoop相关的逻辑, eventLoop轮询到客户端接入事件之后是如何处理的?这一章我们循序渐进, 带大家继续剖析客户端接入之后的相关逻辑
第一节:初始化NioSockectChannelConfig
创建channel
在剖析接入流程之前我们首先补充下第一章有关创建channel的知识:
我们在第一章剖析过channel的创建, 其中NioServerSocketChannel中有个构造方法:
public NioServerSocketChannel(ServerSocketChannel channel) { super(null, channel, SelectionKey.OP_ACCEPT); config = new NioServerSocketChannelConfig(this, javaChannel().socket()); }
当时我们并没有剖析config相关知识, 在这一章首先对此做一个补充, 这里我们看到每一个NioServerSocketChannel都拥有一个config属性, 这个属性存放着NioServerSocketChannel的相关配置, 这里创建一个NioServerSocketChannelConfig对象, 并将当前channel, 和channel对应的java底层的socket对象进行了传入, NioServerSocketChannelConfig其实是NioServerSocketChannel的内部类
我们跟到NioServerSocketChannelConfig类的构造方法中:
private NioServerSocketChannelConfig(NioServerSocketChannel channel, ServerSocket javaSocket) { super(channel, javaSocket); }
我们继续跟入其父类DefaultServerSocketChannelConfig的构造方法中:
public DefaultServerSocketChannelConfig(ServerSocketChannel channel, ServerSocket javaSocket) { super(channel); if (javaSocket == null) { throw new NullPointerException("javaSocket"); } this.javaSocket = javaSocket; }
这里继续调用了其父类的构造方法, 并保存了jdk底层的socket对象, 并且调用其父类DefaultChannelConfig的构造方法
跟到其父类DefaultChannelConfig的构造方法中
public DefaultChannelConfig(Channel channel) { this(channel, new AdaptiveRecvByteBufAllocator()); }
这里调用了自身的构造方法, 传入了channel和一个AdaptiveRecvByteBufAllocator对象
AdaptiveRecvByteBufAllocator是一个缓冲区分配器, 用于分配一个缓冲区Bytebuf的, 有关Bytebuf的相关内容会在后面的章节详细讲解, 这里可以简单介绍作为了解, 就当对于之后知识的预习
Bytebuf相当于jdk的ByetBuffer, Netty对其做了重新的封装, 用于读写channel中的字节流, 熟悉Nio的同学对此应该并不陌生, AdaptiveRecvByteBufAllocator就是用于分配netty中ByetBuff的缓冲区分配器, 根据名字, 我们不难看出这个缓冲区是一个可变大小的字节缓冲区
我们跟到AdaptiveRecvByteBufAllocator的构造方法中:
public AdaptiveRecvByteBufAllocator() { //DEFAULT_MINIMUM:最小缓冲区长度64字节 //DEFAULT_INITIAL:初始容量1024字节 //最大容量65536字节 this(DEFAULT_MINIMUM, DEFAULT_INITIAL, DEFAULT_MAXIMUM); }
这里调用自身的构造方法并且传入了三个属性, 这三个属性的含义分别为:
DEFAULT_MINIMUM
:代表要分配的缓冲区长度最少为64个字节
DEFAULT_INITIAL
:代表要分配的缓冲区的初始容量为1024个字节
DEFAULT_MAXIMUM
:代表要分配的缓冲区最大容量为65536个字节
我们跟到this(DEFAULT_MINIMUM, DEFAULT_INITIAL, DEFAULT_MAXIMUM)方法中
public AdaptiveRecvByteBufAllocator(int minimum, int initial, int maximum) { //忽略验证代码 //最小容量在table中的下标 int minIndex = getSizeTableIndex(minimum); if (SIZE_TABLE[minIndex] < minimum) { this.minIndex = minIndex + 1; } else { this.minIndex = minIndex; } //最大容量在table中的下标 int maxIndex = getSizeTableIndex(maximum); if (SIZE_TABLE[maxIndex] > maximum) { this.maxIndex = maxIndex - 1; } else { this.maxIndex = maxIndex; } this.initial = initial; }
其中这里初始化了三个属性, 分别是:
minIndex
:最小容量在size_table中的下标
maxIndex
:最大容量在table中的下标
initial
:初始容量1024个字节
这里的size_table就是一个数组, 里面盛放着byteBuf可分配的内存大小的集合, 分配的bytebuf无论是扩容还是收缩, 内存大小都属于size_table中的元素, 那么这个数组是如何初始化的, 我们跟到这个属性中:
private static final int[] SIZE_TABLE;
我们看到是一个final修饰的静态成员变量, 我们跟到static块中看它的初始化过程:
static { //List集合 List<Integer> sizeTable = new ArrayList<Integer>(); //从16开始, 每递增16添加到List中, 直到大于等于512 for (int i = 16; i < 512; i += 16) { sizeTable.add(i); } //从512开始, 倍增添加到List中, 直到内存溢出 for (int i = 512; i > 0; i <<= 1) { sizeTable.add(i); } //初始化数组 SIZE_TABLE = new int[sizeTable.size()]; //将list的内容放入数组中 for (int i = 0; i < SIZE_TABLE.length; i ++) { SIZE_TABLE[i] = sizeTable.get(i); } }
首先创建一个Integer类型的list用于盛放内存元素
这里通过两组循环为list添加元素
首先看第一组循环:
for (int i = 16; i < 512; i += 16) { sizeTable.add(i); }
这里是通过16平移的方式, 直到512个字节, 将每次平移之后的内存大小添加到list中
再看第二组循环
for (int i = 512; i > 0; i <<= 1) { sizeTable.add(i); }
超过512之后, 再通过倍增的方式循环, 直到int类型内存溢出, 将每次倍增之后大小添加到list中
最后初始化SIZE_TABLE数组, 将list中的元素按下表存放到数组中
这样就初始化了内存数组
再回到AdaptiveRecvByteBufAllocator的构造方法中
public AdaptiveRecvByteBufAllocator(int minimum, int initial, int maximum) { //忽略验证代码 //最小容量在table中的下标 int minIndex = getSizeTableIndex(minimum); if (SIZE_TABLE[minIndex] < minimum) { this.minIndex = minIndex + 1; } else { this.minIndex = minIndex; } //最大容量在table中的下标 int maxIndex = getSizeTableIndex(maximum); if (SIZE_TABLE[maxIndex] > maximum) { this.maxIndex = maxIndex - 1; } else { this.maxIndex = maxIndex; } this.initial = initial; }
这里分别根据传入的最小和最大容量去SIZE_TABLE中获取其下标
我们跟到getSizeTableIndex(minimum)中:
private static int getSizeTableIndex(final int size) { for (int low = 0, high = SIZE_TABLE.length - 1;;) { if (high < low) { return low; } if (high == low) { return high; } int mid = low + high >>> 1; int a = SIZE_TABLE[mid]; int b = SIZE_TABLE[mid + 1]; if (size > b) { low = mid + 1; } else if (size < a) { high = mid - 1; } else if (size == a) { return mid; } else { return mid + 1; } } }
这里是通过二分查找去获取其下表
if (SIZE_TABLE[minIndex] < minimum)这里判断最小容量下标所属的内存大小是否小于最小值, 如果小于最小值则下标+1
最大容量的下标获取原理同上, 判断最大容量下标所属内存大小是否大于最大值, 如果是则下标-1
我们回到DefaultChannelConfig的构造方法:
public DefaultChannelConfig(Channel channel) { this(channel, new AdaptiveRecvByteBufAllocator()); }
刚才我们剖析过了AdaptiveRecvByteBufAllocator()的创建过程, 我们继续跟到this()中:
protected DefaultChannelConfig(Channel channel, RecvByteBufAllocator allocator) { setRecvByteBufAllocator(allocator, channel.metadata()); this.channel = channel; }
我们看到这里初始化了channel, 在channel初始化之前, 调用了setRecvByteBufAllocator(allocator, channel.metadata())方法, 顾名思义, 这是用于设置缓冲区分配器的方法, 第一个参数是我们刚刚分析过的新建的AdaptiveRecvByteBufAllocator对象, 第二个传入的是与channel绑定的ChannelMetadata对象, ChannelMetadata对象是什么?
我们跟进到metadata()方法当中, 由于是channel是NioServerSocketChannel, 所以调用到了NioServerSocketChannel的metadata()方法:
public ChannelMetadata metadata() { return METADATA; }
这里返回了一个成员变量METADATA, 跟到这个成员变量中:
private static final ChannelMetadata METADATA = new ChannelMetadata(false, 16);
这里创建了一个ChannelMetadata对象, 并在构造方法中传入false和16
继续跟到ChannelMetadata的构造方法中
public ChannelMetadata(boolean hasDisconnect, int defaultMaxMessagesPerRead) { //省略验证代码 //false this.hasDisconnect = hasDisconnect; //16 this.defaultMaxMessagesPerRead = defaultMaxMessagesPerRead; }
这里做的事情非常简单, 只初始化了两个属性:
hasDisconnect=false
defaultMaxMessagesPerRead=16
defaultMaxMessagesPerRead=16代表在读取对方的链接或者channel的字节流时(无论server还是client), 最多只循环16次, 后面的讲解将会看到
剖析完了ChannelMetadata对象的创建, 我们回到DefaultChannelConfig的构造方法:
protected DefaultChannelConfig(Channel channel, RecvByteBufAllocator allocator) { setRecvByteBufAllocator(allocator, channel.metadata()); this.channel = channel; }
跟到setRecvByteBufAllocator(allocator, channel.metadata())方法中:
private void setRecvByteBufAllocator(RecvByteBufAllocator allocator, ChannelMetadata metadata) { if (allocator instanceof MaxMessagesRecvByteBufAllocator) { ((MaxMessagesRecvByteBufAllocator) allocator).maxMessagesPerRead(metadata.defaultMaxMessagesPerRead()); } else if (allocator == null) { throw new NullPointerException("allocator"); } rcvBufAllocator = allocator; }
首先会判断传入的缓冲区分配器是不是MaxMessagesRecvByteBufAllocator类型的, 因为AdaptiveRecvByteBufAllocator实现了MaxMessagesRecvByteBufAllocator接口, 所以此条件成立
之后将其转换成MaxMessagesRecvByteBufAllocator类型,
然后调用其maxMessagesPerRead(metadata.defaultMaxMessagesPerRead())方法,
这里会走到其子类DefaultMaxMessagesRecvByteBufAllocator的maxMessagesPerRead(int maxMessagesPerRead)方法中,
其中参数metadata.defaultMaxMessagesPerRead()返回就是ChannelMetadata的属性defaultMaxMessagesPerRead,
也就是16
跟到maxMessagesPerRead(int maxMessagesPerRead)方法中:
public MaxMessagesRecvByteBufAllocator maxMessagesPerRead(int maxMessagesPerRead) { //忽略验证代码 //初始化为16 this.maxMessagesPerRead = maxMessagesPerRead; return this; }
这里将自身属性maxMessagesPerRead设置为16, 然后返回自身
回到DefaultChannelConfig的构造方法
private void setRecvByteBufAllocator(RecvByteBufAllocator allocator, ChannelMetadata metadata) { if (allocator instanceof MaxMessagesRecvByteBufAllocator) { ((MaxMessagesRecvByteBufAllocator) allocator).maxMessagesPerRead(metadata.defaultMaxMessagesPerRead()); } else if (allocator == null) { throw new NullPointerException("allocator"); } rcvBufAllocator = allocator; }
设置完了内存分配器的maxMessagesPerRead属性, 最后将DefaultChannelConfig自身的成员变量rcvBufAllocator设置成我们初始化完毕的allocator对象
至此, 有关channelConfig有关的初始化过程剖析完成
以上就是Netty分布式客户端接入流程初始化源码分析的详细内容,更多关于Netty分布式客户端接入流程初始化的资料请关注我们其它相关文章!