C++基于回溯法解决八皇后问题示例

本文实例讲述了C++基于回溯法解决八皇后问题的方法。分享给大家供大家参考,具体如下:

回溯法的基本做法是搜索,或是一种组织得井井有条的,能避免不必要搜索的穷举式搜索法。这种方法适用于解一些组合数相当大的问题。

回溯法在问题的解空间树中,按深度优先策略,从根结点出发搜索解空间树。算法搜索至解空间树的任意一点时,先判断该结点是否包含问题的解。如果肯定不包含,则跳过对该结点为根的子树的搜索,逐层向其祖先结点回溯;否则,进入该子树,继续按深度优先策略搜索。

回溯法指导思想——走不通,就掉头。设计过程:确定问题的解空间;确定结点的扩展规则;搜索。

n皇后问题

要在n*n的国际象棋棋盘中放n个皇后,使任意两个皇后都不能互相吃掉。规则:皇后能吃掉同一行、同一列、同一对角线的任意棋子。求所有的解。n=8是就是著名的八皇后问题了。

设八个皇后为xi,分别在第i行(i=1,2,3,4……,8);

问题的解状态:可以用(1,x1),(2,x2),……,(8,x8)表示8个皇后的位置;

由于行号固定,可简单记为:(x1,x2,x3,x4,x5,x6,x7,x8);

问题的解空间:(x1,x2,x3,x4,x5,x6,x7,x8),1≤xi≤8(i=1,2,3,4……,8),共88个状态;

约束条件:八个(1,x1),(2,x2) ,(3,x3),(4,x4) ,(5,x5), (6,x6) , (7,x7), (8,x8)不在同一行、同一列和同一对角线上。

盲目的枚举算法:通过8重循环模拟搜索空间中的88个状态,从中找出满足约束条件的“答案状态”。程序如下:

/*
 *作者:侯凯
 *说明:八皇后——盲目迭代法
 *日期:2013-12-18
 */
#include <iostream>
using namespace std;
bool check_1(int a[],int n)
{
for(int i=2;i<=n;i++)
{
 for(int j=1;j<=i-1;j++)
 {
  if ((a[i]==a[j])||(abs(a[i]-a[j])==i-j))
  {
   return false;
  }
 }
}
return true;//不冲突
}
void queens_1()
{
 int a[9];
 int count = 0;
 for(a[1]=1;a[1]<=8;a[1]++)
 {
  for(a[2]=1;a[2]<=8;a[2]++)
  {
   for(a[3]=1;a[3]<=8;a[3]++)
   {
    for(a[4]=1;a[4]<=8;a[4]++)
    {
     for(a[5]=1;a[5]<=8;a[5]++)
     {
      for(a[6]=1;a[6]<=8;a[6]++)
      {
       for(a[7]=1;a[7]<=8;a[7]++)
       {
        for(a[8]=1;a[8]<=8;a[8]++)
        {
         if(!check_1(a,8))
          continue;
         else
         {
          for(int i=1;i<=8;i++)
          {
           cout<<a[i];
          }
          cout<<endl;
          count++;
         }
        }
       }
      }
     }
    }
   }
  }
 }
 cout<<count<<endl;
}
void main()
{
 queens_1();
}

程序思想比较简单,最后可知共92种摆放方法。如果能够排除那些没有前途的状态,会节约时间——回溯法(走不通,就回头)。

bool check_2 (int a[ ],int n)
{//多次被调用,只需一重循环
 for(int i=1;i<=n-1;i++)
 {
  if((abs(a[i]-a[n])==n-i)||(a[i]==a[n]))
   return false;
 }
 return true;
}
void queens_2()
{
 int a[9];
 int count = 0;
 for(a[1]=1;a[1]<=8;a[1]++)
 {
  for(a[2]=1;a[2]<=8;a[2]++)
  {
   if (!check_2(a,2)) continue;
   for(a[3]=1;a[3]<=8;a[3]++)
   {
    if (!check_2(a,3)) continue;
    for(a[4]=1;a[4]<=8;a[4]++)
    {
     if (!check_2(a,4)) continue;
     for(a[5]=1;a[5]<=8;a[5]++)
     {
      if (!check_2(a,5)) continue;
      for(a[6]=1;a[6]<=8;a[6]++)
      {
       if (!check_2(a,6)) continue;
       for(a[7]=1;a[7]<=8;a[7]++)
       {
        if (!check_2(a,7)) continue;
        for(a[8]=1;a[8]<=8;a[8]++)
        {
         if (!check_2(a,8))
          continue;
         else
         {
          for(int i=1;i<=8;i++)
          {
           cout<<a[i];
          }
          cout<<endl;
          count++;
         }
        }
       }
      }
     }
    }
   }
  }
 }
 cout<<count<<endl;
}
void main()
{
 queens_2();
}

n此算法可读性很好,体现了“回溯”。但它只针对八皇后问题,解决任意的n皇后问题还要修改程序结构。如果要解决n皇后的问题,就需要将n作为参数传递给函数,函数需要重写来实现回溯(不能采用级联的for循环,n不确定);从另一方面,程序中出现了大量的for循环,而且for中的函数结构很相似,自然想到的是递归迭代回溯。这就是回溯比较常用的两种实现方法:非递归回溯和递归回溯。

非递归回溯的程序实现:

void backdate (int n)
{
 int count = 0;
 int a[100];
 int k = 1;
 a[1]=0;
 while(k>0)
 {
  a[k]=a[k]+1;//对应for循环的1~n
  while((a[k]<=n)&&(!check_2(a,k)))//搜索第k个皇后位置
  {
   a[k]=a[k]+1;
  }
  if(a[k]<=n)//找到了合理的位置
  {
   if(k==n )
   {//找到一组解
    for(int i=1;i<=8;i++)
    {
     cout<<a[i];
    }
    cout<<endl;
    count++;
   }
   else
   {
    k=k+1;//继续为第k+1个皇后找到位置,对应下一级for循环
    a[k]=0;//下一个皇后一定要从头开始搜索
   }
  }
  else
  {
   k=k-1;//回溯,对应执行外内层for循环回到更上层
  }
 }
 cout<<count<<endl;
}
void main()
{
 backdate(8);
}

这样也可以得到,8皇后问题的92中结果。更简单、可读的方法是采用递归的方式,如下:

int a[100], n, count;
void backtrack(int k)
{
 if (k>n)//找到解
 {
  for(int i=1;i<=8;i++)
  {
   cout<<a[i];
  }
  cout<<endl;
  count++;
 }
 else
 {
  for (int i = 1;i <=n; i++)
  {
   a[k] = i;
   if (check_2(a,k) == 1)
   {backtrack(k+1);}
  }
 }
}
void main()
{
 n=8,count=0;
 backtrack(1);
 cout<<count<<endl;
}

可见,递归调用大大减少了代码量,也增加了程序的可读性。给出其中的一个解,如下:

希望本文所述对大家C++程序设计有所帮助。

(0)

相关推荐

  • 八皇后问题的相关C++代码解答示例

    八皇后问题即指在一个8*8的棋盘上放置8个皇后,不允许任何两个皇后在棋盘的同一行.同一列和同一对角线上.关键字:递归.上溯.通用技巧: 经观察发现,对8 x 8的二维数组上的某点a[i][j](0<=i,j<=7) 其主对角线(即左上至右下)上的每个点的i-j+7的值(范围在(0,14))均相等: 其从对角线(即右上至左下)上的每个点的i+j的值(范围在(0,14))均相等: 且每个主对角线之间的i-j+7的值均不同,每个从对角线之间的i-j+7的值亦不同: 如a[3][4]: 主:3-4+7

  • C++实现八皇后问题的方法

    本文实例展示了C++实现八皇后问题的方法,是数据结构与算法中非常经典的一个算法.分享给大家供大家参考之用.具体方法如下: 一般在八皇后问题中,我们要求解的是一个8*8的国际象棋棋盘中,放下8个皇后且互相不能攻击的排列总数.皇后的攻击范围为整行,整列,以及其斜对角线. 由于皇后的攻击范围特性,注定我们每行只能放下一个皇后,于是我们要做的只是逐行放下皇后.八皇后问题是回溯法的典型问题.这里我们用的方法很简单: 从第一行开始逐个检索安全位置摆放皇后,一旦有安全位置则考虑下一行的安全位置.如果发现某行没

  • C++回溯法实例分析

    本文实例讲述了C++的回溯法,分享给大家供大家参考之用.具体方法分析如下: 一般来说,回溯法是一种枚举状态空间中所有可能状态的系统方法,它是一个一般性的算法框架. 解向量a=(a1, a2, ..., an),其中每个元素ai取自一个有限序列集Si,这样的解向量可以表示一个排列,其中ai是排列中的第i个元素,也可以表示子集S,其中ai为真当且仅当全集中的第i个元素在S中:甚至可以表示游戏的行动序列或者图中的路径. 在回溯法的每一步,我们从一个给定的部分解a={a1, a2, ..., ak}开始

  • C语言使用回溯法解旅行售货员问题与图的m着色问题

    旅行售货员问题 1.问题描述: 旅行售货员问题又称TSP问题,问题如下:某售货员要到若干个城市推销商品,已知各城市之间的路程(或旅费),他要选定一条从驻地出发,经过每个城市一遍最后回到驻地的路线,使总的路线(或总的旅费)最小.数学模型为给定一个无向图,求遍历每一个顶点一次且仅一次的一条回路,最后回到起点的最小花费. 2.输入要求: 输入的第一行为测试样例的个数T( T < 120 ),接下来有T个测试样例.每个测试样例的第一行是无向图的顶点数n.边数m( n < 12,m < 100 )

  • c++递归实现n皇后问题代码(八皇后问题)

    还是先来看看最基础的8皇后问题: 在8X8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行.同一列或同一斜线上,问有多少种摆法. 扩展到N皇后问题是一样的.一看,似乎要用到二维数组.其实不需要.一维数组就能判断,比如Arr[i],就可以表示一个元素位于第i行第Arr[i]列--应用广泛的小技巧.而且在这里我们不用考虑去存储整个矩阵,如果Arr[i]存在,那么我们在打印的时候,打印到皇后位置的时候输出1,非皇后位输出0即可. 这种思路的实现方式网上大把,包括前面提到的那

  • 基于C++的农夫过河问题算法设计与实现方法

    本文实例讲述了基于C++的农夫过河问题算法设计与实现方法.分享给大家供大家参考,具体如下: 问题描述: 一个农夫带着-只狼.一只羊和-棵白菜,身处河的南岸.他要把这些东西全部运到北岸.他面前只有一条小船,船只能容下他和-件物品,另外只有农夫才能撑船.如果农夫在场,则狼不能吃羊,羊不能吃白菜,否则狼会吃羊,羊会吃白菜,所以农夫不能留下羊和白菜自己离开,也不能留下狼和羊自己离开,而狼不吃白菜.请求出农夫将所有的东西运过河的方案. 实现上述求解的搜索过程可以采用两种不同的策略:一种广度优先搜索,另一种

  • 采用C++实现区间图着色问题(贪心算法)实例详解

    本文所述算法即假设要用很多个教室对一组活动进行调度.我们希望使用尽可能少的教室来调度所有活动.采用C++的贪心算法,来确定哪一个活动使用哪一间教室. 对于这个问题也常被称为区间图着色问题,即相容的活动着同色,不相容的着不同颜色,使得所用颜色数最少. 具体实现代码如下: //贪心算法 #include "stdafx.h" #include<iostream> #define N 100 using namespace std; struct Activity { int n

  • C++三色球问题描述与算法分析

    本文实例讲述了C++三色球问题.分享给大家供大家参考,具体如下: /* * 作 者:刘同宾 * 完成日期:2012 年 11 月 15 日 * 版 本 号:v1.0 * * 输入描述: * 问题描述:三色球问题:若一个口袋中放有12个球,其中有3个红的.3个白的和6个黒的,问从中任取8个共有多少种不同的颜色搭配? * 提示: 设任取的红球个数为i,白球个数为j,则黒球个数为8-i-j,根据题意红球和白球个数的取值范围是0~3, * 在红球和白球个数确定的条件下,黒球个数取值应为8-i-j<=6.

  • C++基于回溯法解决八皇后问题示例

    本文实例讲述了C++基于回溯法解决八皇后问题的方法.分享给大家供大家参考,具体如下: 回溯法的基本做法是搜索,或是一种组织得井井有条的,能避免不必要搜索的穷举式搜索法.这种方法适用于解一些组合数相当大的问题. 回溯法在问题的解空间树中,按深度优先策略,从根结点出发搜索解空间树.算法搜索至解空间树的任意一点时,先判断该结点是否包含问题的解.如果肯定不包含,则跳过对该结点为根的子树的搜索,逐层向其祖先结点回溯:否则,进入该子树,继续按深度优先策略搜索. 回溯法指导思想--走不通,就掉头.设计过程:确

  • C语言基于回溯算法解决八皇后问题的方法

    本文实例讲述了C语言基于回溯算法解决八皇后问题的方法.分享给大家供大家参考,具体如下: 问题描述: 八皇后问题,是一个古老而著名的问题,是回溯算法的典型案例:在8X8格的国际象棋棋盘上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行.同一列或同一斜线上,问有多少种摆法. 问题求解: 采用回溯算法,即从第一行开始,依次探查可以放置皇后的位置,若找到,则放置皇后,开始探查下一行:若该行没有位置可以放置皇后,则回溯至上一行,清除该行放置皇后的信息,从该行原本放置皇后的下一个位置开始探查可

  • PHP基于回溯算法解决n皇后问题的方法示例

    本文实例讲述了PHP基于回溯算法解决n皇后问题的方法.分享给大家供大家参考,具体如下: 这里对于n皇后问题就不做太多的介绍,相关的介绍与算法分析可参考前面一篇C++基于回溯法解决八皇后问题. 回溯法的基本做法是搜索,或是一种组织得井井有条的,能避免不必要搜索的穷举式搜索法.这种方法适用于解一些组合数相当大的问题. 回溯法在问题的解空间树中,按深度优先策略,从根结点出发搜索解空间树.算法搜索至解空间树的任意一点时,先判断该结点是否包含问题的解.如果肯定不包含,则跳过对该结点为根的子树的搜索,逐层向

  • python基于右递归解决八皇后问题的方法

    本文实例讲述了python基于右递归解决八皇后问题的方法.分享给大家供大家参考.具体分析如下: 凡是线性回溯都可以归结为右递归的形式,也即是二叉树,因此对于只要求一个解的问题,采用右递归实现的程序要比回溯法要优美的多. def Test(queen,n): '''这个就不用说了吧,就是检验第n(下标,0-7)行皇后的位置是否合理''' q=queen[n] for i in xrange(n): if queen[i]==q or queen[i]-q==n-i or queen[i]-q==i

  • Java使用递归回溯完美解决八皇后的问题

    八皇后问题 八皇后问题,是一个古老而著名的问题,是回溯算法的典型案例.该问题是国际西洋棋棋手马克斯·贝瑟尔于1848年提出:在8X8格的国际象棋上摆放八个皇后,使其不能互相攻击,即:任意两个皇后都不能处于同一行.同一列或同一斜线上,问有多少种摆法. 解决思路 ①第一个皇后先放第一行第一列. ②第二个皇后放在第二行第一列.然后判断是否OK,如果不0K, 继续放在第二列.第三列.依次把所有列都放完,找到一个合适. ③继续第三个皇后, 还是第一列.第二列-直到第8个皇后也能放在一个不冲突的位置,算是找

  • javascript递归回溯法解八皇后问题

    下面给大家分享的是回溯法解八皇后, 带详细注解,这里就不多废话了. function NQueens(order) { if (order < 4) { console.log('N Queens problem apply for order bigger than 3 ! '); return; } var nQueens = []; var backTracking = false; rowLoop: for (var row=0; row<order; row++) { //若出现ro

  • Python基于回溯法解决01背包问题实例

    本文实例讲述了Python基于回溯法解决01背包问题.分享给大家供大家参考,具体如下: 同样的01背包问题,前面采用动态规划的方法,现在用回溯法解决.回溯法采用深度优先策略搜索问题的解,不多说,代码如下: bestV=0 curW=0 curV=0 bestx=None def backtrack(i): global bestV,curW,curV,x,bestx if i>=n: if bestV<curV: bestV=curV bestx=x[:] else: if curW+w[i]

  • python 使用递归回溯完美解决八皇后的问题

    八皇后问题描述:在一个8✖️8的棋盘上,任意摆放8个棋子,要求任意两个棋子不能在同一行,同一列,同一斜线上,问有多少种解法. 规则分析: 任意两个棋子不能在同一行比较好办,设置一个队列,队列里的每个元素代表一行,就能达到要求 任意两个棋子不能在同一列也比较好处理,设置的队列里每个元素的数值代表着每行棋子的列号,比如(0,7,3),表示第一行的棋子放在第一列,第二行的棋子放在第8列,第3行的棋子放在第4列(从0开始计算列号) 任意两个棋子不能在同一斜线上,可以把整个棋盘当作是一个XOY平面,原点在

  • C语言回溯法解八皇后问题(八皇后算法)

    八皇后问题(N皇后问题)的回溯法求解 一.问题描述 在一个国际象棋棋盘上放置八个皇后,使得任何两个皇后之间不相互攻击,求出所有的布棋方法,并推广到N皇后情况. 二.参考资料 啥文字都不用看,B站上有个非常详细的动画视频解说,上链接!!! Click Here! 三.源代码 #include<iostream> #include<vector> #include<string> using namespace std; void put_queen(int x, int

  • Python解决八皇后问题示例

    本文实例讲述了Python解决八皇后问题的方法.分享给大家供大家参考,具体如下: 八皇后问题是一个以国际象棋为背景的问题:如何能够在 8×8 的国际象棋棋盘上放置八个皇后,使得任何一个皇后都无法直接吃掉其他的皇后?为了达到此目的,任两个皇后都不能处于同一条横行.纵行或斜线上.八皇后问题可以推广为更一般的n皇后摆放问题:这时棋盘的大小变为n1×n1,而皇后个数也变成n2.而且仅当 n2 = 1 或 n1 ≥ 3 时问题有解. 这是一个典型的回溯算法,我们可以将问题进行分解: 首先,我们要想到某种方

随机推荐