分享python数据统计的一些小技巧

最近在用python做数据统计,这里总结了一些最近使用时查找和总结的一些小技巧,希望能帮助在做这方面时的一些童鞋。有些技巧是很平常的用法,平时我们没有注意,但是在特定场景,这些小方法还是能带来很大的帮助。

1.在字典中将键映射到多个值上面

{'b': [4, 5, 6],
'a': [1, 2, 3]}

有时候我们在统计相同key值的时候,希望把所有相同key的条目添加到以key为键的一个字典中,然后再进行各种操作,这时候我们就可以使用下面的代码进行操作:

from collections import defaultdict
d = defaultdict(list)
print(d)
d['a'].append(1)
d['a'].append(2)
d['a'].append(3)
d['b'].append(4)
d['b'].append(5)
d['b'].append(6)
print(d)
print(d.get("a"))
print(d.keys())
print([d.get(i) for i in d])

这里是使用了collections中的方法,这里面还拥有很多有用的方法,我们有时间在继续进行深入了解。

上面代码运行结果:

defaultdict(, {})
defaultdict(, {'b': [4, 5, 6], 'a': [1, 2, 3]})
[1, 2, 3]
dict_keys(['b', 'a'])
[[4, 5, 6], [1, 2, 3]]

我们将数据填入之后,相当于进行快速分组,然后遍历每个组就可以统计一些我们需要的数据。

2.迅速转换字典键值对

data = {...}
zip(data.values(), data.keys())

data是我们的格式数据,使用zip后进行快速键值转换,然后可以使用max,min之类函数进行数据操作。

3.通过公共键对字典进行排序

from operator import itemgetter
data = [
  {'name': "bran", "uid": 101},
  {'name': "xisi", "uid": 102},
  {'name': "land", "uid": 103}
]
print(sorted(data, key=itemgetter("name")))
print(sorted(data, key=itemgetter("uid")))

数据格式就是data,我们想要对name或者uid进行排序我们就是用代码中的方法。
运行结果:

[{'name': 'bran', 'uid': 101}, {'name': 'land', 'uid': 103}, {'name': 'xisi', 'uid': 102}]
[{'name': 'bran', 'uid': 101}, {'name': 'xisi', 'uid': 102}, {'name': 'land', 'uid': 103}]

正如我们期望中的一样

4.对列表中的多个字典根据某一字段进行分组

注意注意,在进行分组前要首先对数据进行排序处理,排序字段根据实际要求来选择

即将处理的数据:

rows = [
  {'name': "bran", "uid": 101, "class": 13},
  {'name': "xisi", "uid": 101, "class": 11},
  {'name': "land", "uid": 103, "class": 10}
]

期望处理结果:

{
101: [{'name': 'xisi', 'class': 11, 'uid': 101},{'name': 'bran', 'class': 13, 'uid': 101}],
103: [{'name': 'land', 'class': 10, 'uid': 103}]
}

我们按照uid进行分组,这里只是演示,uid一般也不会重复。

这个比较复杂一点,我们一部一步来分解

some = [('a', [1, 2, 3]), ('b', [4, 5, 6])]
print(dict(some))

结果:

{'b': [4, 5, 6], 'a': [1, 2, 3]}

这里我们的目的是将元组转换成字典,这个很简单,应该都能看懂。接着我们来下一步对待处理数据进行排序:

data_one = sorted(rows, key=itemgetter("class"))
print(data_one)
data_two = sorted(rows, key=lambda x: (x["uid"], x["class"]))
print(data_two)

这里我们提供两种排序方式原理相同,只是样式稍有区别,第一种data_one是直接使用itemgetter,按照我们前面使用过得,直接按照某一字段进行排序,可是有时候我们会有另一种要求:

先按照某一字段排序,当第一字段重复时,再按照另一字段排序。

这时我们就用第二种方法,进行多字段值排序。
排序结果如下:

[{'name': 'land', 'class': 10, 'uid': 103}, {'name': 'xisi', 'class': 11, 'uid': 101}, {'name': 'bran', 'class': 13, 'uid': 101}]
[{'name': 'xisi', 'class': 11, 'uid': 101}, {'name': 'bran', 'class': 13, 'uid': 101}, {'name': 'land', 'class': 10, 'uid': 103}]

结果大家慢慢看一下,还是略有差别。

接下来就进行最后一步了,将我们刚才讲的两种方式结合起来使用:

data = dict([(g, list(k)) for g, k in groupby(data_two, key=lambda x: x["uid"])])
print(data)

我们对排序好的数据进行分组,然后生成元组列表,最后将其转换成字典,这里大功告成,我们成功将数据进行分组。

python数据统计的一些小技巧就分享到这,有需要的可以参考学习。

(0)

相关推荐

  • Python运用于数据分析的简单教程

    最近,Analysis with Programming加入了Planet Python.作为该网站的首批特约博客,我这里来分享一下如何通过Python来开始数据分析.具体内容如下: 数据导入         导入本地的或者web端的CSV文件:     数据变换:     数据统计描述:     假设检验         单样本t检验:     可视化:     创建自定义函数. 数据导入 这是很关键的一步,为了后续的分析我们首先需要导入数据.通常来说,数据是CSV格式,就算不是,至少也可以转

  • python实现统计代码行数的方法

    本文实例讲述了python实现统计代码行数的方法.分享给大家供大家参考.具体实现方法如下: ''' Author: liupengfei Function: count lines of code in a folder iteratively Shell-format: cmd [dir] Attention: default file encode is utf8 and default file type is java-source-file. But users can customi

  • Python实现对excel文件列表值进行统计的方法

    本文实例讲述了Python实现对excel文件列表值进行统计的方法.分享给大家供大家参考.具体如下: #!/usr/bin/env python #coding=gbk #此PY用来统计一个execl文件中的特定一列的值的分类 import win32com.client filename=raw_input("请输入要统计文件的详细地址:") flag=0 #用于判断文件 名如果不带'日'就为 0 if '\xc8\xd5' in filename:flag=1 print 50*'

  • 用python实现简单EXCEL数据统计的实例

    任务: 用python时间简单的统计任务-统计男性和女性分别有多少人. 用到的物料:xlrd 它的作用-读取excel表数据 代码: import xlrd workbook = xlrd.open_workbook('demo.xlsx') #打开excel数据表 SheetList = workbook.sheet_names()#读取电子表到列表 SheetName = SheetList[0]#读取第一个电子表的名称 Sheet1 = workbook.sheet_by_index(0)

  • 分享python数据统计的一些小技巧

    最近在用python做数据统计,这里总结了一些最近使用时查找和总结的一些小技巧,希望能帮助在做这方面时的一些童鞋.有些技巧是很平常的用法,平时我们没有注意,但是在特定场景,这些小方法还是能带来很大的帮助. 1.在字典中将键映射到多个值上面 {'b': [4, 5, 6], 'a': [1, 2, 3]} 有时候我们在统计相同key值的时候,希望把所有相同key的条目添加到以key为键的一个字典中,然后再进行各种操作,这时候我们就可以使用下面的代码进行操作: from collections im

  • Python中最大最小赋值小技巧(分享)

    码代码时,有时候需要根据比较大小分别赋值: import random seq = [random.randint(0, 1000) for _ in range(100)] #方法1: xmax, xmin = max(seq), min(seq) #方法2: xmax, *_, xmin = sorted(seq) 从上面这个来看,看不出来方法2的优势来,不过我们常用的是比较两个数的大小,并选取: dx, dy = random.sample(seq, 2) #方法1: dx, dy = m

  • 分享常用的3个C++小技巧

    目录 1.头文件是引用<iostream.h>还是<iostream>? 2.逗号分割表达式 3.在main函数之前运行代码 1.头文件是引用<iostream.h>还是<iostream>? 编码中依旧有程序员依旧使用<iostream.h>而不是<iostream>库.实际上,这两个库是有区别的: 首先针对用.h作为标准头文件已经明确不推荐使用. 其次,在功能方面,<iostream>包括IO类,且同时支持窄字符和宽字

  • Python中Collection的使用小技巧

    本文所述实例来自独立软件开发者 Alex Marandon,在他的博客中曾介绍了数个关于 Python Collection 的实用小技巧,在此与大家分享.供大家学习借鉴之用.具体如下: 1.判断一个 list 是否为空 传统的方式: if len(mylist): # Do something with my list else: # The list is empty 由于一个空 list 本身等同于 False,所以可以直接: if mylist: # Do something with

  • Pandas实现数据类型转换的一些小技巧汇总

    前言 Pandas是Python当中重要的数据分析工具,利用Pandas进行数据分析时,确保使用正确的数据类型是非常重要的,否则可能会导致一些不可预知的错误发生. Pandas 的数据类型:数据类型本质上是编程语言用来理解如何存储和操作数据的内部结构.例如,一个程序需要理解你可以将两个数字加起来,比如 5 + 10 得到 15.或者,如果是两个字符串,比如「cat」和「hat」,你可以将它们连接(加)起来得到「cathat」.尚学堂•百战程序员陈老师指出有关 Pandas 数据类型的一个可能令人

  • 提升Python运行速度的5个小技巧

    目录 1. 选择合适的数据结构 2. 善用强大的内置函数和第三方库 3. 少用循环 4. 避免循环重复计算 5. 少用内存.少用全局变量 总结 官方原文,代码均可运行 Python 是世界上使用最广泛的编程语言之一.它是一种解释型高级通用编程语言,具有广泛的用途,几乎可以将其用于所有事物.其以简单的语法.优雅的代码和丰富的第三方库而闻名.python除了有很多优点外,但在速度上还有一个非常大的缺点. 虽然Python代码运行缓慢,但可以通过下面分享的5个小技巧提升Python运行速度! 首先,定

  • 分享五个有用的jquery小技巧

    下文里技巧实现的效果虽然并不新鲜,但通过jQuery的封装,HTML实现了很大的清洁.清爽简洁又高效的代码任何时候都是开发者所醉心追求的终极目标,也许它简单,但是它能量巨大.一起来看看我们小编推荐给大家的五个非常实用的jQuery技巧. 1.禁用鼠标右键 $(document).ready(function() { $(document).bind("contextmenu", function(e) { return false; }); }); 当然jquery1.7版本以后bin

  • 分享一些iOS开发实用的小技巧

    1.设置navigationbar title颜色 UIColor *whiteColor = [UIColor whiteColor]; NSDictionary *dic = [NSDictionary dictionaryWithObject:whiteColor forKey:NSForegroundColorAttributeName]; [self.navigationController.navigationBar setTitleTextAttributes:dic]; 2.获取

  • 分享5个JavaScript的写法小技巧

    目录 前言 过滤空值 数组对象解构 分隔数字 箭头函数直接返回对象 await 链条 总结 前言 JavaScript 易上手,但是难以全面掌握:它有许多“怪癖”,只有在长时间的使用它,才能逐渐揭开它神秘的面纱~ 本篇带来 JavaScript 几个片段代码,里面有些小技巧,肯定有你不知道~ 冲! 过滤空值 filter() 方法创建一个新的数组,新数组中的元素是通过检查指定数组中符合条件的所有元素. 注意: filter() 不会对空数组进行检测. 注意: filter() 不会改变原始数组.

  • 分享7个杀手级JS小技巧

    目录 一.数组乱序 二.复制到剪贴板 三.数组去重 四.检测黑暗模式 五.滚动到顶部 六.滚动到底部 七.生成随机颜色 一.数组乱序 在使用需要某种程度的随机化的算法时,你会经常发现洗牌数组是一个相当必要的技能.下面的片段以O(n log n)的复杂度对一个数组进行就地洗牌. const shuffleArray = (arr) => arr.sort(() => Math.random() - 0.5) // 测试 const arr = [1, 2, 3, 4, 5, 6, 7, 8, 9

随机推荐