使用 Java8 实现观察者模式的方法(下)

在上篇文章给大家介绍了使用Java8 实现观察者模式的方法(上),本文继续给大家介绍java8观察者模式相关知识,具体内容如下所述:

线程安全的实现

前面章节介绍了在现代Java环境下的实现观察者模式,虽然简单但很完整,但这一实现忽略了一个关键性问题:线程安全。大多数开放的Java应用都是多线程的,而且观察者模式也多用于多线程或异步系统。例如,如果外部服务更新其数据库,那么应用也会异步地收到消息,然后用观察者模式通知内部组件更新,而不是内部组件直接注册监听外部服务。

观察者模式的线程安全主要集中在模式的主体上,因为修改注册监听器集合时很可能发生线程冲突,比如,一个线程试图添加一个新的监听器,而另一线程又试图添加一个新的animal对象,这将触发对所有注册监听器的通知。鉴于先后顺序,在已注册的监听器收到新增动物的通知前,第一个线程可能已经完成也可能尚未完成新监听器的注册。这是一个经典的线程资源竞争案例,正是这一现象告诉开发者们需要一个机制来保证线程安全。

这一问题的最简单的解决方案是:所有访问或修改注册监听器list的操作都须遵循Java的同步机制,比如:

public synchronized AnimalAddedListener registerAnimalAddedListener (AnimalAddedListener listener) { /*...*/ }
public synchronized void unregisterAnimalAddedListener (AnimalAddedListener listener) { /*...*/ }
public synchronized void notifyAnimalAddedListeners (Animal animal) { /*...*/ } 

这样一来,同一时刻只有一个线程可以修改或访问已注册的监听器列表,可以成功地避免资源竞争问题,但是新问题又出现了,这样的约束太过严格(synchronized关键字和Java并发模型的更多信息,请参阅官方网页)。通过方法同步,可以时刻观测对监听器list的并发访问,注册和撤销监听器对监听器list而言是写操作,而通知监听器访问监听器list是只读操作。由于通过通知访问是读操作,因此是可以多个通知操作同时进行的。

因此,只要没有监听器注册或撤销注册,任意多的并发通知都可以同时执行,而不会引发对注册的监听器列表的资源争夺。当然,其他情况下的资源争夺现象存在已久,为了解决这一问题,设计了ReadWriteLock用以分开管理读写操作的资源锁定。Zoo类的线程安全ThreadSafeZoo实现代码如下:

public class ThreadSafeZoo {
private final ReadWriteLock readWriteLock = new ReentrantReadWriteLock();
protected final Lock readLock = readWriteLock.readLock();
protected final Lock writeLock = readWriteLock.writeLock();
private List<Animal> animals = new ArrayList<>();
private List<AnimalAddedListener> listeners = new ArrayList<>();
public void addAnimal (Animal animal) {
// Add the animal to the list of animals
this.animals.add(animal);
// Notify the list of registered listeners
this.notifyAnimalAddedListeners(animal);
}
public AnimalAddedListener registerAnimalAddedListener (AnimalAddedListener listener) {
// Lock the list of listeners for writing
this.writeLock.lock();
try {
// Add the listener to the list of registered listeners
this.listeners.add(listener);
}
finally {
// Unlock the writer lock
this.writeLock.unlock();
}
return listener;
}
public void unregisterAnimalAddedListener (AnimalAddedListener listener) {
// Lock the list of listeners for writing
this.writeLock.lock();
try {
// Remove the listener from the list of the registered listeners
this.listeners.remove(listener);
}
finally {
// Unlock the writer lock
this.writeLock.unlock();
}
}
public void notifyAnimalAddedListeners (Animal animal) {
// Lock the list of listeners for reading
this.readLock.lock();
try {
// Notify each of the listeners in the list of registered listeners
this.listeners.forEach(listener -> listener.updateAnimalAdded(animal));
}
finally {
// Unlock the reader lock
this.readLock.unlock();
}
}
}

通过这样部署,Subject的实现能确保线程安全并且多个线程可以同时发布通知。但尽管如此,依旧存在两个不容忽略的资源竞争问题:

对每个监听器的并发访问。多个线程可以同时通知监听器要新增动物了,这意味着一个监听器可能会同时被多个线程同时调用。

对animal list的并发访问。多个线程可能会同时向animal list添加对象,如果通知的先后顺序存在影响,那就可能导致资源竞争,这就需要一个并发操作处理机制来避免这一问题。如果注册的监听器列表在收到通知添加animal2后,又收到通知添加animal1,此时就会产生资源竞争。但是如果animal1和animal2的添加由不同的线程执行,也是有可能在animal2前完成对animal1添加操作,具体来说就是线程1在通知监听器前添加animal1并锁定模块,线程2添加animal2并通知监听器,然后线程1通知监听器animal1已经添加。虽然在不考虑先后顺序时,可以忽略资源竞争,但问题是真实存在的。

对监听器的并发访问

并发访问监听器可以通过保证监听器的线程安全来实现。秉承着类的“责任自负”精神,监听器有“义务”确保自身的线程安全。例如,对于前面计数的监听器,多线程的递增或递减动物数量可能导致线程安全问题,要避免这一问题,动物数的计算必须是原子操作(原子变量或方法同步),具体解决代码如下:

public class ThreadSafeCountingAnimalAddedListener implements AnimalAddedListener {
private static AtomicLong animalsAddedCount = new AtomicLong(0);
@Override
public void updateAnimalAdded (Animal animal) {
// Increment the number of animals
animalsAddedCount.incrementAndGet();
// Print the number of animals
System.out.println("Total animals added: " + animalsAddedCount);
}
}

方法同步解决方案代码如下:

public class CountingAnimalAddedListener implements AnimalAddedListener {
private static int animalsAddedCount = 0;
@Override
public synchronized void updateAnimalAdded (Animal animal) {
// Increment the number of animals
animalsAddedCount++;
// Print the number of animals
System.out.println("Total animals added: " + animalsAddedCount);
}
}

要强调的是监听器应该保证自身的线程安全,subject需要理解监听器的内部逻辑,而不是简单确保对监听器的访问和修改的线程安全。否则,如果多个subject共用同一个监听器,那每个subject类都要重写一遍线程安全的代码,显然这样的代码不够简洁,因此需要在监听器类内实现线程安全。

监听器的有序通知

当要求监听器有序执行时,读写锁就不能满足需求了,而需要引入一个新的机制,可以保证notify函数的调用顺序和animal添加到zoo的顺序一致。有人尝试过用方法同步来实现,然而根据Oracle文档中的方法同步介绍,可知方法同步并不提供操作执行的顺序管理。它只是保证原子操作,也就是说操作不会被打断,并不能保证先来先执行(FIFO)的线程顺序。ReentrantReadWriteLock可以实现这样的执行顺序,代码如下:

public class OrderedThreadSafeZoo {
private final ReadWriteLock readWriteLock = new ReentrantReadWriteLock(true);
protected final Lock readLock = readWriteLock.readLock();
protected final Lock writeLock = readWriteLock.writeLock();
private List<Animal> animals = new ArrayList<>();
private List<AnimalAddedListener> listeners = new ArrayList<>();
public void addAnimal (Animal animal) {
// Add the animal to the list of animals
this.animals.add(animal);
// Notify the list of registered listeners
this.notifyAnimalAddedListeners(animal);
}
public AnimalAddedListener registerAnimalAddedListener (AnimalAddedListener listener) {
// Lock the list of listeners for writing
this.writeLock.lock();
try {
// Add the listener to the list of registered listeners
this.listeners.add(listener);
}
finally {
// Unlock the writer lock
this.writeLock.unlock();
}
return listener;
}
public void unregisterAnimalAddedListener (AnimalAddedListener listener) {
// Lock the list of listeners for writing
this.writeLock.lock();
try {
// Remove the listener from the list of the registered listeners
this.listeners.remove(listener);
}
finally {
// Unlock the writer lock
this.writeLock.unlock();
}
}
public void notifyAnimalAddedListeners (Animal animal) {
// Lock the list of listeners for reading
this.readLock.lock();
try {
// Notify each of the listeners in the list of registered listeners
this.listeners.forEach(listener -> listener.updateAnimalAdded(animal));
}
finally {
// Unlock the reader lock
this.readLock.unlock();
}
}
}

这样的实现方式,register, unregister和notify函数将按照先进先出(FIFO)的顺序获得读写锁权限。例如,线程1注册一个监听器,线程2在开始执行注册操作后试图通知已注册的监听器,线程3在线程2等待只读锁的时候也试图通知已注册的监听器,采用fair-ordering方式,线程1先完成注册操作,然后线程2可以通知监听器,最后线程3通知监听器。这样保证了action的执行顺序和开始顺序一致。

如果采用方法同步,虽然线程2先排队等待占用资源,线程3仍可能比线程2先获得资源锁,而且不能保证线程2比线程3先通知监听器。问题的关键所在:fair-ordering方式可以保证线程按照申请资源的顺序执行。读写锁的顺序机制很复杂,应参照ReentrantReadWriteLock的官方文档以确保锁的逻辑足够解决问题。

截止目前实现了线程安全,在接下来的章节中将介绍提取主题的逻辑并将其mixin类封装为可重复代码单元的方式优缺点。

主题逻辑封装到Mixin类

把上述的观察者模式设计实现封装到目标的mixin类中很具吸引力。通常来说,观察者模式中的观察者包含已注册的监听器的集合;负责注册新的监听器的register函数;负责撤销注册的unregister函数和负责通知监听器的notify函数。对于上述的动物园的例子,zoo类除动物列表是问题所需外,其他所有操作都是为了实现主题的逻辑。

Mixin类的案例如下所示,需要说明的是为使代码更为简洁,此处去掉关于线程安全的代码:

public abstract class ObservableSubjectMixin<ListenerType> {
private List<ListenerType> listeners = new ArrayList<>();
public ListenerType registerListener (ListenerType listener) {
// Add the listener to the list of registered listeners
this.listeners.add(listener);
return listener;
}
public void unregisterAnimalAddedListener (ListenerType listener) {
// Remove the listener from the list of the registered listeners
this.listeners.remove(listener);
}
public void notifyListeners (Consumer<? super ListenerType> algorithm) {
// Execute some function on each of the listeners
this.listeners.forEach(algorithm);
}
}

正因为没有提供正在注册的监听器类型的接口信息,不能直接通知某个特定的监听器,所以正需要保证通知功能的通用性,允许客户端添加一些功能,如接受泛型参数类型的参数匹配,以适用于每个监听器,具体实现代码如下:

public class ZooUsingMixin extends ObservableSubjectMixin<AnimalAddedListener> {
private List<Animal> animals = new ArrayList<>();
public void addAnimal (Animal animal) {
// Add the animal to the list of animals
this.animals.add(animal);
// Notify the list of registered listeners
this.notifyListeners((listener) -> listener.updateAnimalAdded(animal));
}
}

Mixin类技术的最大优势是把观察者模式的Subject封装到一个可重复调用的类中,而不是在每个subject类中都重复写这些逻辑。此外,这一方法使得zoo类的实现更为简洁,只需要存储动物信息,而不用再考虑如何存储和通知监听器。

然而,使用mixin类并非只有优点。比如,如果要存储多个类型的监听器怎么办?例如,还需要存储监听器类型AnimalRemovedListener。mixin类是抽象类,Java中不能同时继承多个抽象类,而且mixin类不能改用接口实现,这是因为接口不包含state,而观察者模式中state需要用来保存已经注册的监听器列表。

其中的一个解决方案是创建一个动物增加和减少时都会通知的监听器类型ZooListener,代码如下所示:

public interface ZooListener {
public void onAnimalAdded (Animal animal);
public void onAnimalRemoved (Animal animal);
}

这样就可以使用该接口实现利用一个监听器类型对zoo状态各种变化的监听了:

public class ZooUsingMixin extends ObservableSubjectMixin<ZooListener> {
private List<Animal> animals = new ArrayList<>();
public void addAnimal (Animal animal) {
// Add the animal to the list of animals
this.animals.add(animal);
// Notify the list of registered listeners
this.notifyListeners((listener) -> listener.onAnimalAdded(animal));
}
public void removeAnimal (Animal animal) {
// Remove the animal from the list of animals
this.animals.remove(animal);
// Notify the list of registered listeners
this.notifyListeners((listener) -> listener.onAnimalRemoved(animal));
}
}

将多个监听器类型合并到一个监听器接口中确实解决了上面提到的问题,但仍旧存在不足之处,接下来的章节会详细讨论。

Multi-Method监听器和适配器

在上述方法,监听器的接口中实现的包含太多函数,接口就过于冗长,例如,Swing MouseListener就包含5个必要的函数。尽管可能只会用到其中一个,但是只要用到鼠标点击事件就必须要添加这5个函数,更多可能是用空函数体来实现剩下的函数,这无疑会给代码带来不必要的混乱。

其中一种解决方案是创建适配器(概念来自GoF提出的适配器模式),适配器中以抽象函数的形式实现监听器接口的操作,供具体监听器类继承。这样一来,具体监听器类就可以选择其需要的函数,对adapter不需要的函数采用默认操作即可。例如上面例子中的ZooListener类,创建ZooAdapter(Adapter的命名规则与监听器一致,只需要把类名中的Listener改为Adapter即可),代码如下:

public class ZooAdapter implements ZooListener {
@Override
public void onAnimalAdded (Animal animal) {}
@Override
public void onAnimalRemoved (Animal animal) {}
}

乍一看,这个适配器类微不足道,然而它所带来的便利却是不可小觑的。比如对于下面的具体类,只需选择对其实现有用的函数即可:

public class NamePrinterZooAdapter extends ZooAdapter {
@Override
public void onAnimalAdded (Animal animal) {
// Print the name of the animal that was added
System.out.println("Added animal named " + animal.getName());
}
}

有两种替代方案同样可以实现适配器类的功能:一是使用默认函数;二是把监听器接口和适配器类合并到一个具体类中。默认函数是Java8新提出的,在接口中允许开发者提供默认(防御)的实现方法。

Java库的这一更新主要是方便开发者在不改变老版本代码的情况下,实现程序扩展,因此应该慎用这个方法。部分开发者多次使用后,会感觉这样写的代码不够专业,而又有开发者认为这是Java8的特色,不管怎样,需要明白这个技术提出的初衷是什么,再结合具体问题决定是否要用。使用默认函数实现的ZooListener接口代码如下示:

public interface ZooListener {
default public void onAnimalAdded (Animal animal) {}
default public void onAnimalRemoved (Animal animal) {}
}

通过使用默认函数,实现该接口的具体类,无需在接口中实现全部函数,而是选择性实现所需函数。虽然这是接口膨胀问题一个较为简洁的解决方案,开发者在使用时还应多加注意。

第二种方案是简化观察者模式,省略了监听器接口,而是用具体类实现监听器的功能。比如ZooListener接口就变成了下面这样:

public class ZooListener {
public void onAnimalAdded (Animal animal) {}
public void onAnimalRemoved (Animal animal) {}
}

这一方案简化了观察者模式的层次结构,但它并非适用于所有情况,因为如果把监听器接口合并到具体类中,具体监听器就不可以实现多个监听接口了。例如,如果AnimalAddedListener和AnimalRemovedListener接口写在同一个具体类中,那么单独一个具体监听器就不可以同时实现这两个接口了。此外,监听器接口的意图比具体类更显而易见,很显然前者就是为其他类提供接口,但后者就并非那么明显了。

如果没有合适的文档说明,开发者并不会知道已经有一个类扮演着接口的角色,实现了其对应的所有函数。此外,类名不包含adapter,因为类并不适配于某一个接口,因此类名并没有特别暗示此意图。综上所述,特定问题需要选择特定的方法,并没有哪个方法是万能的。

在开始下一章前,需要特别提一下,适配器在观察模式中很常见,尤其是在老版本的Java代码中。Swing API正是以适配器为基础实现的,正如很多老应用在Java5和Java6中的观察者模式中所使用的那样。zoo案例中的监听器或许并不需要适配器,但需要了解适配器提出的目的以及其应用,因为我们可以在现有的代码中对其进行使用。下面的章节,将会介绍时间复杂的监听器,该类监听器可能会执行耗时的运算或进行异步调用,不能立即给出返回值。

Complex & Blocking监听器

关于观察者模式的一个假设是:执行一个函数时,一系列监听器会被调用,但假定这一过程对调用者而言是完全透明的。例如,客户端代码在Zoo中添加animal时,在返回添加成功之前,并不知道会调用一系列监听器。如果监听器的执行需要时间较长(其时间受监听器的数量、每个监听器执行时间影响),那么客户端代码将会感知这一简单增加动物操作的时间副作用。

本文不能面面俱到的讨论这个话题,下面几条是开发者调用复杂的监听器时应该注意的事项:

监听器启动新线程。新线程启动后,在新线程中执行监听器逻辑的同时,返回监听器函数的处理结果,并运行其他监听器执行。

Subject启动新线程。与传统的线性迭代已注册的监听器列表不同,Subject的notify函数重启一个新的线程,然后在新线程中迭代监听器列表。这样使得notify函数在执行其他监听器操作的同时可以输出其返回值。需要注意的是需要一个线程安全机制来确保监听器列表不会进行并发修改。

队列化监听器调用并采用一组线程执行监听功能。将监听器操作封装在一些函数中并队列化这些函数,而非简单的迭代调用监听器列表。这些监听器存储到队列中后,线程就可以从队列中弹出单个元素并执行其监听逻辑。这类似于生产者-消费者问题,notify过程产生可执行函数队列,然后线程依次从队列中取出并执行这些函数,函数需要存储被创建的时间而非执行的时间供监听器函数调用。例如,监听器被调用时创建的函数,那么该函数就需要存储该时间点,这一功能类似于Java中的如下操作:

public class AnimalAddedFunctor {
private final AnimalAddedListener listener;
private final Animal parameter;
public AnimalAddedFunctor (AnimalAddedListener listener, Animal parameter) {
this.listener = listener;
this.parameter = parameter;
}
public void execute () {
// Execute the listener with the parameter provided during creation
this.listener.updateAnimalAdded(this.parameter);
}
}

函数创建并保存在队列中,可以随时调用,这样一来就无需在遍历监听器列表时立即执行其对应操作了。一旦每个激活监听器的函数都压入队列中,“消费者线程”就会给客户端代码返回操作权。之后某个时间点“消费者线程”将会执行这些函数,就像在监听器被notify函数激活时执行一样。这项技术在其他语言中被叫作参数绑定,刚好适合上面的例子,技术的实质是保存监听器的参数,execute()函数再直接调用。如果监听器接收多个参数,处理方法也类似。

需要注意的是如果要保存监听器的执行顺序,则需要引入综合排序机制。方案一中,监听器按照正常的顺序激活新线程,这样可以确保监听器按照注册的顺序执行。方案二中,队列支持排序,其中的函数会按照进入队列的顺序执行。简单来说就是,开发者需要重视监听器多线程执行的复杂程度,加以小心处理以确保实现所需的功能。

结束语

观察者模式在1994年被写进书中以前,就已经是主流的软件设计模式了,为软件设计中经常出现的问题提供了很多令人满意的解决方案。Java一直是使用该模式的引领者,在其标准库中封装了这一模式,但是鉴于Java更新到了版本8,十分有必要重新考查经典模式在其中的使用。随着lambda表达式和其他新结构的出现,这一“古老的”模式又有了新的生机。无论是处理旧程序还是使用这一历史悠久的方法解决新问题,尤其对经验丰富的Java开发者来说,观察者模式都是开发者的主要工具。

OneAPM 为您提供端到端的Java 应用性能解决方案,我们支持所有常见的 Java 框架及应用服务器,助您快速发现系统瓶颈,定位异常根本原因。分钟级部署,即刻体验,Java 监控从来没有如此简单。想阅读更多技术文章,请访问OneAPM 官方技术博客。

以上内容给大家介绍了使用 Java8 实现观察者模式的方法(下),希望对大家有所帮助!

(0)

相关推荐

  • Java中的观察者模式实例讲解

    观察者模式是一种行为设计模式.观察者模式的用途是,当你对一个对象的状态感兴趣,希望在它每次发生变化时获得通知.在观察者模式中,观察另外一个对象状态的对象叫做Observer观察者,被观察的对象叫着Subject被观察者.根据GoF规则,观察者模式的意图是: 复制代码 代码如下: 定义对象之间一对多的依赖关系,一个对象状态改变,其他相关联的对象就会得到通知并被自动更新. Subject(被观察者)包含了一些需要在其状态改变时通知的观察者.因此,他应该提供给观察者可以register(注册)自己和u

  • Java设计模式开发中使用观察者模式的实例教程

    观察者模式是软件设计模式中的一种,使用也比较普遍,尤其是在GUI编程中.关于设计模式的文章,网络上写的都比较多,而且很多文章写的也不错,虽然说有一种重复早轮子的嫌疑,但此轮子非彼轮子,侧重点不同,思路也不同,讲述方式也不近相同. 关键要素 主题: 主题是观察者观察的对象,一个主题必须具备下面三个特征. 持有监听的观察者的引用 支持增加和删除观察者 主题状态改变,通知观察者 观察者: 当主题发生变化,收到通知进行具体的处理是观察者必须具备的特征. 为什么要用这种模式 这里举一个例子来说明,牛奶送奶

  • 使用Java8实现观察者模式的方法(上)

    观察者(Observer)模式又名发布-订阅(Publish/Subscribe)模式,是四人组(GoF,即 Erich Gamma.Richard Helm.Ralph Johnson 和 John Vlissides)在1994合著的<设计模式:可复用面向对象软件的基础>中提出的(详见书中293-313页).尽管这种模式已经有相当长的历史,它仍然广泛适用于各种场景,甚至成为了标准Java库的一个组成部分.目前虽然已经有大量关于观察者模式的文章,但它们都专注于在 Java 中的实现,却忽视了

  • java 在观察者模式中使用泛型T的实例

    被观察者 public class Observable<T> { List<Observer> observers = new ArrayList<Observer>(); boolean changed = false; /** * Adds the specified observer to the list of observers. If it is already * registered, it is not added a second time. *

  • Java中泛型的用法总结

    本文实例总结了Java中泛型的用法.分享给大家供大家参考.具体如下: 1 基本使用 public interface List<E> { void add(E); Iterator<E> iterator(); } 2 泛型与子类 Child是Parent的子类,List<Child>却不是List<Parent>的子类. 因此:List<Object> list = new ArrayList<String>()是错误的. 如果上面

  • Java观察者模式例子

    观察者模式是一种行为设计模式.观察者模式的用途是,当你对一个对象的状态感兴趣,希望在它每次发生变化时获得通知.在观察者模式中,观察另外一个对象状态的对象叫做Observer观察者,被观察的对象叫着Subject被观察者. 观察者模式 Observer 观察者模式定义了一种一对多的依赖关系,让多个观察者对象同时监听某一个主题对象. 这个主题对象在状态上发生变化时,会通知所有观察者对象,让它们能够自动更新自己. 观察者模式的组成 抽象主题角色:把所有对观察者对象的引用保存在一个集合中,每个抽象主题角

  • 使用 Java8 实现观察者模式的方法(下)

    在上篇文章给大家介绍了使用Java8 实现观察者模式的方法(上),本文继续给大家介绍java8观察者模式相关知识,具体内容如下所述: 线程安全的实现 前面章节介绍了在现代Java环境下的实现观察者模式,虽然简单但很完整,但这一实现忽略了一个关键性问题:线程安全.大多数开放的Java应用都是多线程的,而且观察者模式也多用于多线程或异步系统.例如,如果外部服务更新其数据库,那么应用也会异步地收到消息,然后用观察者模式通知内部组件更新,而不是内部组件直接注册监听外部服务. 观察者模式的线程安全主要集中

  • java8新特性之方法引用示例代码

    简介 方法引用是java8的新特性之一, 可以直接引用已有Java类或对象的方法或构造器.方法引用与lambda表达式结合使用,可以进一步简化代码. 方法引用的使用场景 我们用Lambda表达式来实现匿名方法.但有些情况下,我们用Lambda表达式仅仅是调用一些已经存在的方法,除了调用动作外,没有其他任何多余的动作,在这种情况下,我们倾向于通过方法名来调用它,而Lambda表达式可以帮助我们实现这一要求,它使得Lambda在调用那些已经拥有方法名的方法的代码更简洁.更容易理解.方法引用可以理解为

  • Java8中的默认方法(面试者必看)

    背景 在Java8之前,定义在接口中的所有方法都需要在接口实现类中提供一个实现,如果接口的提供者需要升级接口,添加新的方法,那么所有的实现类都需要把这个新增的方法实现一遍,如果说所有的实现类能够自己控制的话,那么还能接受,但是现实情况是实现类可能不受自己控制.比如说Java中的集合框架中的List接口添加一个方法,那么Apache Commons这种框架就会很难受,必须修改所有实现了List的实现类 现在的接口有哪些不便 向已经发布的接口中添加新的方法是问题的根源,一旦接口发生变化,接口的实现者

  • Java8接口之默认方法与静态方法详解

    目录 前言 为什么选择默认方法? Java 8示例:接口中的默认方法 Java 8示例:接口中的静态方法 Java 8 - 抽象类与接口 总结 前言 在Java8之前,java中的接口只能有抽象方法.默认情况下,接口的所有方法都是公共和抽象的.Java8允许接口具有默认和静态方法.我们在接口中使用默认方法的原因是,允许开发人员向接口添加新方法,而不会影响实现这些接口的类. 为什么选择默认方法? 例如,如果A.B.C和D等几个类实现了一个接口XYZInterface,那么如果我们向XYZInter

  • Java8接口的默认方法

    Java8接口的默认方法 什么是默认方法,为什么要有默认方法? 简单说,就是接口可以有实现方法,而且不需要实现类去实现其方法.只需在方法名前面加个default关键字即可. 为什么要有这个特性?首先,之前的接口是个双刃剑,好处是面向抽象而不是面向具体编程,缺陷是,当需要修改接口时候,需要修改全部实现该接口的类,目前的 java 8之前的集合框架没有foreach方法,通常能想到的解决办法是在JDK里给相关的接口添加新的方法及实现.然而,对于已经发布的版本,是没法在给接口添加新方法的同时不影响已有

  • Java8中如何通过方法引用获取属性名详解

    前言 在我们开发过程中常常有一个需求,就是要知道实体类中Getter方法对应的属性名称(Field Name),例如实体类属性到数据库字段的映射,我们常常是硬编码指定 属性名,这种硬编码有两个缺点. 1.编码效率低:因为要硬编码写属性名,很可能写错,需要非常小心,时间浪费在了不必要的检查上. 2.容易让开发人员踩坑:例如有一天发现实体类中Field Name定义的不够明确,希望换一个Field Name,那么代码所有硬编码的Field Name都要跟着变更,对于未并更的地方,是无法在编译期发现的

  • Java8新特性之方法引用的实践指南

    一 前言 日常开发中,经常使用到Lambda表达式,例如: public static void main(String[] args) { List<Integer> list = Arrays.asList(1, 5, 10, 4, 2); // 打印列表中的每一个数字 list.forEach((x) -> System.out.println(x)); } 其中(x) -> System.out.println(x)就是使用的Lambda表达式.Lambda表达式可以分为三

  • C语言超全面讲解函数的使用方法下

    目录 一.函数的嵌套调用 二.函数的链式访问 三.函数递归 递归的优缺点 必要条件 使用场景 函数递归的细节说明 举例说明 对两个必要条件的理解 四.递归练习 C语言超全面讲解函数的使用方法上 一.函数的嵌套调用 在定义函数时,一个函数内不能再定义另一个函数,即不能嵌套定义,但可以嵌套调用函数,即在调用一个函数的过程中,又调用另一个函数. ️注意: 函数可以嵌套调用但是不可以嵌套定义. 每一个函数都应该在大括号的外面独立存在. 代码示例: 根据这张图可以清楚的看到,three_line() 函数

  • 一篇文章带你认识Java8接口的默认方法

    前言 Java8是Oracle于2014年3月发布的一个重要版本,其API在现存的接口上引入了非常多的新方法. 例如,Java8的List接口新增了sort方法.在Java8之前,则每个实现了List接口的类必须定义sort方法的实现,或者从父类中继承它的实现.想象一下,如果List接口的继承体系非常庞杂,那么整个集合框架的维护量有多么大! 为此,在Java8中引入了一种新的机制:接口支持申明带实现的方法. 默认方法 前文提到了Java8中List接口新增了sort方法,其源码如下: publi

随机推荐