Java中如何判断线程池任务已执行完成

目录
  • 不判断的问题
  • 方法1:isTerminated
    • 缺点分析
    • 扩展:线程池的所有状态
  • 方法2:getCompletedTaskCount
    • 方法说明
    • 优缺点分析
  • 方法3:CountDownLatch
    • 优缺点分析
  • 方法4:CyclicBarrier
    • 方法说明
    • 优缺点分析
  • 总结

前言:

很多场景下,我们需要等待线程池的所有任务都执行完,然后再进行下一步操作。对于线程 Thread 来说,很好实现,加一个 join 方法就解决了,然而对于线程池的判断就比较麻烦了。

我们本文提供 4 种判断线程池任务是否执行完的方法:

  • 使用 isTerminated 方法判断。
  • 使用 getCompletedTaskCount 方法判断。
  • 使用 CountDownLatch 判断。
  • 使用 CyclicBarrier 判断。

接下来我们一个一个来看。

不判断的问题

如果不对线程池是否已经执行完做判断,就会出现以下问题,如下代码所示:

import java.util.Random;
import java.util.concurrent.LinkedBlockingDeque;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;
public class ThreadPoolCompleted {
    public static void main(String[] args) {
        // 创建线程池
        ThreadPoolExecutor threadPool = new ThreadPoolExecutor(10, 20,
                0, TimeUnit.SECONDS, new LinkedBlockingDeque<>(1024));
        // 添加任务
        addTask(threadPool);
				// 打印结果
        System.out.println("线程池任务执行完成!");
    }
    /**
     * 给线程池添加任务
     */
    private static void addTask(ThreadPoolExecutor threadPool) {
        // 任务总数
        final int taskCount = 5;
        // 添加任务
        for (int i = 0; i < taskCount; i++) {
            final int finalI = i;
            threadPool.submit(new Runnable() {
                @Override
                public void run() {
                    try {
                        // 随机休眠 0-4s
                        int sleepTime = new Random().nextInt(5);
                        TimeUnit.SECONDS.sleep(sleepTime);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                    System.out.println(String.format("任务%d执行完成", finalI));
                }
            });
        }
    }
}

以上程序的执行结果如下: 

从上述执行结果可以看出,程序先打印了“线程池任务执行完成!”,然后还在陆续的执行线程池的任务,这种执行顺序混乱的结果,并不是我们期望的结果。我们想要的结果是等所有任务都执行完之后,再打印“线程池任务执行完成!”的信息。

产生以上问题的原因是因为主线程 main,和线程池是并发执行的,所以当线程池还没执行完,main 线程的打印结果代码就已经执行了。想要解决这个问题,就需要在打印结果之前,先判断线程池的任务是否已经全部执行完,如果没有执行完就等待任务执行完再执行打印结果。

方法1:isTerminated

我们可以利用线程池的终止状态(TERMINATED)来判断线程池的任务是否已经全部执行完,但想要线程池的状态发生改变,我们就需要调用线程池的 shutdown 方法,不然线程池一直会处于 RUNNING 运行状态,那就没办法使用终止状态来判断任务是否已经全部执行完了,它的实现代码如下:

import java.util.Random;
import java.util.concurrent.LinkedBlockingDeque;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;
/**
 * 线程池任务执行完成判断
 */
public class ThreadPoolCompleted {
    public static void main(String[] args) {
        // 1.创建线程池
        ThreadPoolExecutor threadPool = new ThreadPoolExecutor(10, 20,
                0, TimeUnit.SECONDS, new LinkedBlockingDeque<>(1024));
        // 2.添加任务
        addTask(threadPool);
        // 3.判断线程池是否执行完
        isCompleted(threadPool); // 【核心调用方法】
        // 4.线程池执行完
        System.out.println();
        System.out.println("线程池任务执行完成!");
    }

    /**
     * 方法1:isTerminated 实现方式
     * 判断线程池的所有任务是否执行完
     */
    private static void isCompleted(ThreadPoolExecutor threadPool) {
        threadPool.shutdown();
        while (!threadPool.isTerminated()) { // 如果没有执行完就一直循环
        }
    }

    /**
     * 给线程池添加任务
     */
    private static void addTask(ThreadPoolExecutor threadPool) {
        // 任务总数
        final int taskCount = 5;
        // 添加任务
        for (int i = 0; i < taskCount; i++) {
            final int finalI = i;
            threadPool.submit(new Runnable() {
                @Override
                public void run() {
                    try {
                        // 随机休眠 0-4s
                        int sleepTime = new Random().nextInt(5);
                        TimeUnit.SECONDS.sleep(sleepTime);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                    System.out.println(String.format("任务%d执行完成", finalI));
                }
            });
        }
    }
}

方法说明:shutdown 方法是启动线程池有序关闭的方法,它在完全关闭之前会执行完之前所有已经提交的任务,并且不会再接受任何新任务。当线程池中的所有任务都执行完之后,线程池就进入了终止状态,调用 isTerminated 方法返回的结果就是 true 了。

以上程序的执行结果如下: 

缺点分析

需要关闭线程池。

扩展:线程池的所有状态

线程池总共包含以下 5 种状态:

  • RUNNING:运行状态。
  • SHUTDOWN:关闭状态。
  • STOP:阻断状态。
  • TIDYING:整理状态。
  • TERMINATED:终止状态。

如果不调用线程池的关闭方法,那么线程池会一直处于 RUNNING 运行状态。

方法2:getCompletedTaskCount

我们可以通过判断线程池中的计划执行任务数和已完成任务数,来判断线程池是否已经全部执行完,如果计划执行任务数=已完成任务数,那么线程池的任务就全部执行完了,否则就未执行完,具体实现代码如下:

/**
 * 方法2:getCompletedTaskCount 实现方式
 * 判断线程池的所有任务是否执行完
 */
private static void isCompletedByTaskCount(ThreadPoolExecutor threadPool) {
    while (threadPool.getTaskCount() != threadPool.getCompletedTaskCount()) {
    }
}

以上程序执行结果如下:

方法说明

  • getTaskCount():返回计划执行的任务总数。由于任务和线程的状态可能在计算过程中动态变化,因此返回的值只是一个近似值。
  • getCompletedTaskCount():返回完成执行任务的总数。因为任务和线程的状态可能在计算过程中动态地改变,所以返回的值只是一个近似值,但是在连续的调用中并不会减少。

优缺点分析

此实现方法的优点是无需关闭线程池。 它的缺点是 getTaskCount() 和 getCompletedTaskCount() 返回的是一个近似值,因为线程池中的任务和线程的状态可能在计算过程中动态变化,所以它们两个返回的都是一个近似值。

方法3:CountDownLatch

CountDownLatch 可以理解为一个计数器,我们创建了一个包含 N 个任务的计数器,每个任务执行完计数器 -1,直到计数器减为 0 时,说明所有的任务都执行完了,就可以执行下一段业务的代码了,它的实现流程如

下图所示:

具体实现代码如下:

public static void main(String[] args) throws InterruptedException {
    // 创建线程池
    ThreadPoolExecutor threadPool = new ThreadPoolExecutor(10, 20,
    	0, TimeUnit.SECONDS, new LinkedBlockingDeque<>(1024));
    final int taskCount = 5;    // 任务总数
    // 单次计数器
    CountDownLatch countDownLatch = new CountDownLatch(taskCount); // ①
    // 添加任务
    for (int i = 0; i < taskCount; i++) {
        final int finalI = i;
        threadPool.submit(new Runnable() {
            @Override
            public void run() {
                try {
                    // 随机休眠 0-4s
                    int sleepTime = new Random().nextInt(5);
                    TimeUnit.SECONDS.sleep(sleepTime);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                System.out.println(String.format("任务%d执行完成", finalI));
                // 线程执行完,计数器 -1
                countDownLatch.countDown();  // ②
            }
        });
    }
    // 阻塞等待线程池任务执行完
    countDownLatch.await();  // ③
    // 线程池执行完
    System.out.println();
    System.out.println("线程池任务执行完成!");
}

代码说明:以上代码中标识为 ①、②、③ 的代码行是核心实现代码,其中: ① 是声明一个包含了 5 个任务的计数器; ② 是每个任务执行完之后计数器 -1; ③ 是阻塞等待计数器 CountDownLatch 减为 0,表示任务都执行完了,可以执行 await 方法后面的业务代码了。

以上程序的执行结果如下: 

优缺点分析

CountDownLatch 写法很优雅,且无需关闭线程池,但它的缺点是只能使用一次,CountDownLatch 创建之后不能被重复使用,也就是说 CountDownLatch 可以理解为只能使用一次的计数器。

方法4:CyclicBarrier

CyclicBarrier 和 CountDownLatch 类似,它可以理解为一个可以重复使用的循环计数器,CyclicBarrier 可以调用 reset 方法将自己重置到初始状态,

CyclicBarrier 具体实现代码如下:

public static void main(String[] args) throws InterruptedException {
    // 创建线程池
    ThreadPoolExecutor threadPool = new ThreadPoolExecutor(10, 20,
    	0, TimeUnit.SECONDS, new LinkedBlockingDeque<>(1024));
    final int taskCount = 5;    // 任务总数
    // 循环计数器 ①
    CyclicBarrier cyclicBarrier = new CyclicBarrier(taskCount, new Runnable() {
        @Override
        public void run() {
            // 线程池执行完
            System.out.println();
            System.out.println("线程池所有任务已执行完!");
        }
    });
    // 添加任务
    for (int i = 0; i < taskCount; i++) {
        final int finalI = i;
        threadPool.submit(new Runnable() {
            @Override
            public void run() {
                try {
                    // 随机休眠 0-4s
                    int sleepTime = new Random().nextInt(5);
                    TimeUnit.SECONDS.sleep(sleepTime);
                    System.out.println(String.format("任务%d执行完成", finalI));
                    // 线程执行完
                    cyclicBarrier.await(); // ②
                } catch (InterruptedException e) {
                    e.printStackTrace();
                } catch (BrokenBarrierException e) {
                    e.printStackTrace();
                }
            }
        });
    }
}

以上程序的执行结果如下: 

方法说明

CyclicBarrier 有 3 个重要的方法:

  • 构造方法:构造方法可以传递两个参数,参数 1 是计数器的数量 parties,参数 2 是计数器为 0 时,也就是任务都执行完之后可以执行的事件(方法)。
  • await 方法:在 CyclicBarrier 上进行阻塞等待,当调用此方法时 CyclicBarrier 的内部计数器会 -1,直到发生以下情形之一:
    • 在 CyclicBarrier 上等待的线程数量达到 parties,也就是计数器的声明数量时,则所有线程被释放,继续执行。
    • 当前线程被中断,则抛出 InterruptedException 异常,并停止等待,继续执行。
    • 其他等待的线程被中断,则当前线程抛出 BrokenBarrierException 异常,并停止等待,继续执行。
    • 其他等待的线程超时,则当前线程抛出 BrokenBarrierException 异常,并停止等待,继续执行。
    • 其他线程调用 CyclicBarrier.reset() 方法,则当前线程抛出 BrokenBarrierException 异常,并停止等待,继续执行。
  • reset 方法:使得CyclicBarrier回归初始状态,直观来看它做了两件事:
    • 如果有正在等待的线程,则会抛出 BrokenBarrierException 异常,且这些线程停止等待,继续执行。将是否破损标志位 broken 置为 false。

优缺点分析

CyclicBarrier 从设计的复杂度到使用的复杂度都高于 CountDownLatch,相比于 CountDownLatch 来说它的优点是可以重复使用(只需调用 reset 就能恢复到初始状态),缺点是使用难度较高。

总结

我们本文提供 4 种判断线程池任务是否执行完的方法:

  • 使用 isTerminated 方法判断:通过判断线程池的完成状态来实现,需要关闭线程池,一般情况下不建议使用。
  • 使用 getCompletedTaskCount 方法判断:通过计划执行总任务量和已经完成总任务量,来判断线程池的任务是否已经全部执行,如果相等则判定为全部执行完成。但因为线程个体和状态都会发生改变,所以得到的是一个大致的值,可能不准确。
  • 使用 CountDownLatch 判断:相当于一个线程安全的单次计数器,使用比较简单,且不需要关闭线程池,是比较常用的判断方法
  • 使用 CyclicBarrier 判断:相当于一个线程安全的重复计数器,但使用较为复杂,所以日常项目中使用的较少。

到此这篇关于Java中如何判断线程池任务已执行完成的文章就介绍到这了,更多相关Java线程池任务执行内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Java使用线程池执行定时任务

    目录 1.schedule 2.scheduleAtFixedRate 3.scheduleWithFixedDelay 总结 前言: 在 Java 语言中,有两个线程池可以执行定时任务:ScheduledThreadPool 和 SingleThreadScheduledExecutor,其中 SingleThreadScheduledExecutor 可以看做是 ScheduledThreadPool 的单线程版本,它的用法和 ScheduledThreadPool 是一样的,所以本文重点来

  • Java线程池7个参数的含义

    目录 参数1:corePoolSize 参数2:maximumPoolSize 参数3:keepAliveTime 参数4:TimeUnit 参数5:BlockingQueue 参数6:ThreadFactory 参数7:RejectedExecutionHandler 总结 所谓的线程池的 7 大参数是指,在使用 ThreadPoolExecutor 创建线程池时所设置的 7 个参数, 如以下源码所示: public ThreadPoolExecutor(int corePoolSize, i

  • 从java源码分析线程池(池化技术)的实现原理

    目录 线程池的起源 线程池的定义和使用 方案一:Executors(仅做了解,推荐使用方案二) 方案二:ThreadPoolExecutor 线程池的实现原理 前言: 线程池是一个非常重要的知识点,也是池化技术的一个典型应用,相信很多人都有使用线程池的经历,但是对于线程池的实现原理大家都了解吗?本篇文章我们将深入线程池源码来一探究竟. 线程池的起源 背景: 随着计算机硬件的升级换代,使我们的软件具备多线程执行任务的能力.当我们在进行多线程编程时,就需要创建线程,如果说程序并发很高的话,我们会创建

  • Java详解使用线程池处理任务方法

    什么是线程池? 线程池就是一个可以复用线程的技术. 不使用线程池的问题: 如果用户每发起一个请求,后台就创建一个新线程来处理,下次新任务来了又要创建新线程,而创建新线程的开销是很大的,这样会严重影响系统的性能. 线程池常见面试题: 1.临时线程什么时候创建? 新任务提交时发现核心线程都在忙,任务队列也满了,并且还可以创建临时线程,此时才会创建临时线程. 2.什么时候会开始拒绝任务? 核心线程和临时线程都在忙,任务队列也满了,新的任务过来的时候才会开始任务拒绝. 1.线程池处理Runnable任务

  • java 线程池状态及状态转换

    目录 线程池状态转移 terminated方法 总结 前言: 在 Java 中,线程池的状态和线程的状态是完全不同的, 线程有 6 种状态: NEW:初始化状态. RUNNABLE:可运行/运行状态. BLOCKED:阻塞状态. WAITING:无时限等待状态 TIMED_WAITING:有时限等待状态和 TERMINATED:终止状态. 而线程池的状态有以下 5 种: RUNNING:运行状态,线程池创建好之后就会进入此状态,如果不手动调用关闭方法,那么线程池在整个程序运行期间都是此状态. S

  • java 线程池存在的意义

    目录 前言 创建线程 继承Thread 实现Runnable接口 实现Callable接口 线程池 小结 前言 再次之前我已经花费大量篇幅介绍了Java原声锁和Lock锁.在文章中提到偏向送.轻量级锁.重量级锁.公平锁.非公平锁.自旋锁.自适应自旋锁.分布式锁.分段锁等等锁.所有的锁都是为了解决一个问题应运而生的那就是并发.而产生并发的原因是CPU的发展导致我们程序多线程运行.在代码中我们也经常通过多线程来提高产品的吞吐量. 在锁章节中我们也是通过多线程案例模拟锁的产生的.那么Java领域中有哪

  • Java线程池的四种拒绝策略详解

    目录 预先配置 配置线程池. 创建线程任务 拒绝策略一:AbortPolicy 拒绝策略二:CallerRunsPolicy 拒绝策略三:DiscardPolicy 拒绝策略四:DiscardOldestPolicy 总结 dk1.5版本新增了 JUC 并发包,其中一个包含线程池. 四种拒绝策略:   拒绝策略类型 说明 1 ThreadPoolExecutor.AbortPolicy 默认拒绝策略,拒绝任务并抛出任务 2 ThreadPoolExecutor.CallerRunsPolicy

  • Java中如何判断线程池任务已执行完成

    目录 不判断的问题 方法1:isTerminated 缺点分析 扩展:线程池的所有状态 方法2:getCompletedTaskCount 方法说明 优缺点分析 方法3:CountDownLatch 优缺点分析 方法4:CyclicBarrier 方法说明 优缺点分析 总结 前言: 很多场景下,我们需要等待线程池的所有任务都执行完,然后再进行下一步操作.对于线程 Thread 来说,很好实现,加一个 join 方法就解决了,然而对于线程池的判断就比较麻烦了. 我们本文提供 4 种判断线程池任务是

  • java中多线程与线程池的基本使用方法

    目录 前言 继承Thread 实现Runnale接口 Callable 线程池 常见的4种线程池. 总结 前言 在java中,如果每个请求到达就创建一个新线程,开销是相当大的.在实际使用中,服务器在创建和销毁线程上花费的时间和消耗的系统资源都相当大,甚至可能要比在处理实际的用户请求的时间和资源要多的多.除了创建和销毁线程的开销之外,活动的线程也需要消耗系统资源.如果在一个jvm里创建太多的线程,可能会使系统由于过度消耗内存或"切换过度"而导致系统资源不足.为了防止资源不足,服务器应用程

  • Java中四种线程池的使用示例详解

    在什么情况下使用线程池? 1.单个任务处理的时间比较短 2.将需处理的任务的数量大 使用线程池的好处: 1.减少在创建和销毁线程上所花的时间以及系统资源的开销 2.如不使用线程池,有可能造成系统创建大量线程而导致消耗完系统内存以及"过度切换". 本文详细的给大家介绍了关于Java中四种线程池的使用,分享出来供大家参考学习,下面话不多说了,来一起看看详细的介绍: FixedThreadPool 由Executors的newFixedThreadPool方法创建.它是一种线程数量固定的线程

  • java中通用的线程池实例代码

    复制代码 代码如下: package com.smart.frame.task.autoTask; import java.util.Collection;import java.util.Vector; /** * 任务分发器 */public class TaskManage extends Thread{    protected Vector<Runnable> tasks = new Vector<Runnable>();    protected boolean run

  • Java判断线程池线程是否执行完毕

    在使用多线程的时候有时候我们会使用 java.util.concurrent.Executors的线程池,当多个线程异步执行的时候,我们往往不好判断是否线程池中所有的子线程都已经执行完毕,但有时候这种判断却很有用,例如我有个方法的功能是往一个文件异步地写入内容,我需要在所有的子线程写入完毕后在文件末尾写"---END---"及关闭文件流等,这个时候我就需要某个标志位可以告诉我是否线程池中所有的子线程都已经执行完毕,我使用这种方式来判断. public class MySemaphore

  • Java 判断线程池所有任务是否执行完毕的操作

    我就废话不多说了,大家还是直接看代码吧~ import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; public class Test { public static void main(String args[]) throws InterruptedException { ExecutorService exe = Executors.newFixedThreadPool(3); f

  • Java ExecutorService四种线程池使用详解

    1.引言 合理利用线程池能够带来三个好处.第一:降低资源消耗.通过重复利用已创建的线程降低线程创建和销毁造成的消耗.第二:提高响应速度.当任务到达时,任务可以不需要的等到线程创建就能立即执行.第三:提高线程的可管理性.线程是稀缺资源,如果无限制的创建,不仅会消耗系统资源,还会降低系统的稳定性,使用线程池可以进行统一的分配,调优和监控.但是要做到合理的利用线程池,必须对其原理了如指掌. 2.线程池使用 Executors提供的四种线程 1.newCachedThreadPool创建一个可缓存线程池

  • springboot中@Async默认线程池导致OOM问题

    前言: 1.最近项目上在测试人员压测过程中发现了OOM问题,项目使用springboot搭建项目工程,通过查看日志中包含信息:unable to create new native thread 内存溢出的三种类型: 1.第一种OutOfMemoryError: PermGen space,发生这种问题的原意是程序中使用了大量的jar或class 2.第二种OutOfMemoryError: Java heap space,发生这种问题的原因是java虚拟机创建的对象太多 3.第三种OutOfM

  • 面试题:Java中如何停止线程的方法

    如何停止线程是Java并发面试中的常见问题,本篇文章将从答题思路到答题细节给出一些参考. 答题思路: 停止线程的正确方式是使用中断 想停止线程需要停止方,被停止方,被停止方的子方法相互配合 扩展到常见的错误停止线程方法:已被废弃的stop/suspend,无法唤醒阻塞线程的volatile 1. 正确方式是中断 其实从逻辑上也很好理解的,一个线程正在运行,如何让他停止? A. 从外部直接调用该线程的stop方法,直接把线程停下来. B. 从外部通过中断通知线程停止,然后切换到被停止的线程,该线程

随机推荐