运用.net core中实例讲解RabbitMQ高可用集群构建

目录
  • 一、集群架构简介
  • 二、普通集群搭建
    • 2.1 各个节点分别安装RabbitMQ
    • 2.2 把节点加入集群
    • 2.3 代码演示普通集群的问题
  • 三、镜像集群
  • 四、HAProxy环境搭建。
  • 五、KeepAlived 环境搭建

一、集群架构简介

当单台 RabbitMQ 服务器的处理消息的能力达到瓶颈时,此时可以通过 RabbitMQ 集群来进行扩展,从而达到提升吞吐量的目的。RabbitMQ 集群是一个或多个节点的逻辑分组,集群中的每个节点都是对等的,每个节点共享所有的用户,虚拟主机,队列,交换器,绑定关系,运行时参数和其他分布式状态等信息。一个高可用,负载均衡的 RabbitMQ 集群架构应类似下图:

解析说明:

最下面层是RabbitMQ的集群,没有ha镜像时是普通集群,普通集群的缺点是挂了一个机器,以这个机器为根的队列就无法使用了(一个队列的数据只会存在一个节点),无法实现高可用。

所以把队列变成镜像队列,这样每个节点都会有一份完整的数据,有节点挂了也不影响使用,实现了高可用,但RabbitMQ集群本身没有实现负载均衡,也就是说对于一个三节点的集群,

每个节点的负载可能都是不相同的。

HAProxy层的作用就是为了实现RabbitMQ集群的负载均衡,但一个节点的话显然也不能高可用,所以需要两个HAProxy实现HaProxy的高可用,但没法实现自动的故障转移,就是HAProxy1挂了,

需要手动把ip地址改成HAProxy2的。

所以需要用到KeepAlived,它通常由一主一备两个节点组成,同一时间内只有主节点会提供对外服务,并同时提供一个虚拟的 IP 地址 (Virtual Internet Protocol Address ,简称 VIP),可以避免暴露真实ip 。 如果主节点故障,那么备份节点会自动接管 VIP 并成为新的主节点 ,直到原有的主节点恢复。

生产环境架构应该为:

机器1:RabbitMQ1,机器2:RabbitMQ2,机器3:RabbitMQ3,机器4:HAProxy+keeplived(主),机器5(HAProxy+keeplived(备)。

这里资源原因只有3台机器,所以搭建架构为:

172.16.2.84(rabbit1) RabbitMQ1,HAProxy+keeplived(主)
172.16.2.85(rabbit2) RabbitMQ2,HAProxy+keeplived(备)
172.16.2.86(rabbit3) RabbitMQ3

二、普通集群搭建

2.1 各个节点分别安装RabbitMQ

这里前面的章节功能使用是用的docker安装,这里集群不用docker,因为docker安装会有很多的映射,很容易扰乱,装有docker的rabbitmq的,需要先把docker停掉。

这里准备了3台机器,172.16.2.84(rabbit1),172.16.2.85(rabbit2),172.16.2.86(rabbit3),为了避免混淆,下面都会用rabbit1,rabbit2,rabbit3称呼。

rabbit1,rabbit2,rabbit3都执行一遍下面的安装。

1)安装前,先修改hostname,因为rabbitmq集群通讯需要用hostname

rabbit1机器执行

hostnamectl set-hostname rabbit1 --static

rabbit2机器执行

hostnamectl set-hostname rabbit2 --static

rabbit3机器执行

hostnamectl set-hostname rabbit3 --static

rabbit1,rabbit2,rabbit3执行同样操作

#修改hosts,因为rabbitmq通讯要通过hostname

vi /etc/hosts

2)把ip对应hostname添加到后面

172.16.2.84 rabbit1
172.16.2.85 rabbit2
172.16.2.86 rabbit3

# 重启网络
systemctl restart network
# 重启机器
init 6

3)安装Erlang

#第一步 运行package cloud提供的erlang安装脚本
curl -s https://packagecloud.io/install/repositories/rabbitmq/erlang/script.rpm.sh | sudo bash

#第二步 安装erlang
yum install erlang

#第三步 查看erlang版本号,在命令行直接输入erl
erl

4)安装RabbitMQ

#第一步 先导入两个key
rpm --import https://packagecloud.io/rabbitmq/rabbitmq-server/gpgkey
rpm --import https://packagecloud.io/gpg.key

#第二步 运行package cloud提供的rabbitmq安装脚本
curl -s https://packagecloud.io/install/repositories/rabbitmq/rabbitmq-server/script.rpm.sh | sudo bash

#第三步 下载rabbit安装文件
wget https://github.com/rabbitmq/rabbitmq-server/releases/download/v3.9.5/rabbitmq-server-3.9.5-1.el8.noarch.rpm

#第四步
rpm --import https://www.rabbitmq.com/rabbitmq-release-signing-key.asc

#第五步 rabbitMQ依赖
yum -y install epel-release
yum -y install socat

#第六步 安装
rpm -ivh rabbitmq-server-3.9.5-1.el8.noarch.rpm

#第七步 启用管理平台插件,启用插件后,可以可视化管理RabbitMQ
rabbitmq-plugins enable rabbitmq_management

#第八步 启动应用
systemctl start rabbitmq-server

上面rabbitmq的版本号安装文件地址:https://github.com/rabbitmq/rabbitmq-server/releases/

5)设置访问权限

#创建管理员账户
rabbitmqctl add_user admin 123456
#设置注册的账户为管理员
rabbitmqctl set_user_tags admin administrator
#授权远程访问
rabbitmqctl set_permissions -p / admin "." "." ".*"
#重启服务
systemctl restart rabbitmq-server

注意这里关了防火墙,如果开启防火墙的话,需要把15672端口开放出来

#查看防火墙状态
systemctl status firewalld
#关闭防火墙
systemctl stop firewalld

到这里,3台机器都安装好了RabbitMQ。

2.2 把节点加入集群

1)停止服务rabbit2,rabbit3

#停止全部服务
systemctl stop rabbitmq-server

2)拷贝cookie

将rabbit1上的.erlang.cookie文件拷贝到其他两台主机上。该 cookie 文件相当于密钥令牌,集群中的 RabbitMQ 节点需要通过交换密钥令牌以获得相互认证,因此处于同一集群的所有节点需要具有相同的密钥令牌,否则在搭建过程中会出现 Authentication Fail 错误,只要保证这3台机器中的.erlang.cookie内的密钥字符串一致即可,这里把rabbit1的密钥复制到rabbit2,rabbit3。

3个机器都给.erlang.cookie 400权限。

#给600权限
chmod 600 /var/lib/rabbitmq/.erlang.cookie

rabbit1机器

#编辑文件
vi /var/lib/rabbitmq/.erlang.cookie

把内容复制出来,修改rabbit2,rabbit3这个文件的值为这个。

启动服务

#开启全部服务
systemctl start rabbitmq-server

3)集群搭建

RabbitMQ 集群的搭建需要选择其中任意一个节点为基准,将其它节点逐步加入。这里我们以 rabbit1为基准节点,将 rabbit2 和 rabbit3 加入集群。在 rabbit2和 rabbit3上执行以下命令:

# 1.停止服务
rabbitmqctl stop_app
# 2.重置状态(需要更改节点类型的时候执行,首次不需要执行,除非你节点是以disk加入集群的)
rabbitmqctl reset
# 3.节点加入
#rabbitmqctl join_cluster --ram rabbit@rabbit1
rabbitmqctl join_cluster rabbit@rabbit1
# 4.启动服务
rabbitmqctl start_app

join_cluster命令有一个可选的参数 --ram,该参数代表新加入的节点是内存节点,默认是磁盘节点。如果是内存节点,则所有的队列、交换器、绑定关系、用户、访问权限和 vhost 的元数据都将存储在内存中,如果是磁盘节点,则存储在磁盘中。内存节点可以有更高的性能,但其重启后所有配置信息都会丢失,因此RabbitMQ 要求在集群中至少有一个磁盘节点,其他节点可以是内存节点,大多数情况下RabbitMQ 的性能都是够用的,可以采用默认的磁盘节点的形式。

另外,如果节点以磁盘节点的形式加入,则需要先使用reset命令进行重置,然后才能加入现有群集,重置节点会删除该节点上存在的所有的历史资源和数据。采用内存节点的形式加入时可以略过reset这一步,因为内存上的数据本身就不是持久化的。

操作上面的,一个普通集群就搭建成功了,打开rabbit管理界面(随便打开一个都是一样的)。

2.3 代码演示普通集群的问题

普通集群中, 第一次创建队列时,会随机选一个节点作为根节点,这个节点会存储队列的信息(交互机,路由,队列名等)和队列的数据,其它两个节点只会同步根节点的元信息(交换机,路由,队列名)等,

但不会存储队列的数据,他们是通过元信息找到根节点读写消息。

例如集群选择了rabbit2作为根节点,那么数据存储在rabbit2,rabbit1和rabbit3是没有数据的,那么如果rabbit2宕机了,队列里面的数据就取不到了。

代码演示,.NetCore5.0读取集群连接代码。

/// <summary>
        /// 获取集群连接对象
        /// </summary>
        /// <returns></returns>
        public static IConnection GetClusterConnection()
        {
            var factory = new ConnectionFactory
            {
                UserName = "admin",//账户
                Password = "123456",//密码
                VirtualHost = "/" //虚拟机
            };
            List<AmqpTcpEndpoint> list = new List<AmqpTcpEndpoint>()
            {
                new AmqpTcpEndpoint(){HostName="172.16.2.84",Port=5672},
                 new AmqpTcpEndpoint(){HostName="172.16.2.85",Port=5672},
                  new AmqpTcpEndpoint(){HostName="172.16.2.86",Port=5672}
            };
            return factory.CreateConnection(list);
        }

生产者代码:

/// <summary>
        /// 工作队列模式
        /// </summary>
        public static void WorkerSendMsg()
        {
            string queueName = "worker_order";//队列名
            //创建连接
            using (var connection = RabbitMQHelper.GetClusterConnection())
            {
                //创建信道
                using (var channel = connection.CreateModel())
                {
                    //创建队列
                    channel.QueueDeclare(queueName, durable: true, exclusive: false, autoDelete: false, arguments: null);
                    IBasicProperties properties = channel.CreateBasicProperties();
                    properties.Persistent = true; //消息持久化
                    for ( var i=0;i<10;i++)
                    {
                        string message = $"Hello RabbitMQ MessageHello,{i+1}";
                        var body = Encoding.UTF8.GetBytes(message);
                        //发送消息到rabbitmq
                        channel.BasicPublish(exchange: "", routingKey: queueName, mandatory: false, basicProperties: properties, body);
                        Console.WriteLine($"发送消息到队列:{queueName},内容:{message}");
                    }
                }
            }
        }

执行:

查看RabbitMQ管理界面

RabbitMQ选择了rabbit3作为根节点,现在试一下停止rabbit3节点

#停止服务
rabbitmqctl stop_app

发现队列不可用了,启动rabbit3,再试一下停止rabbit2

发现队列正常,试下消费数据:

public static void WorkerConsumer()
        {
            string queueName = "worker_order";
            var connection = RabbitMQHelper.GetClusterConnection();
            {
                //创建信道
                var channel = connection.CreateModel();
                {
                    //创建队列
                    channel.QueueDeclare(queueName, durable: true, exclusive: false, autoDelete: false, arguments: null);
                    var consumer = new EventingBasicConsumer(channel);
                    ///prefetchCount:1来告知RabbitMQ,不要同时给一个消费者推送多于 N 个消息,也确保了消费速度和性能
                    ///global:是否设为全局的
                    ///prefetchSize:单条消息大小,通常设0,表示不做限制
                    //是autoAck=false才会有效
                    channel.BasicQos(prefetchSize: 0, prefetchCount: 1, global: true);
                    int i = 1;
                    int index = new Random().Next(10);
                    consumer.Received += (model, ea) =>
                    {
                        //处理业务
                        var message = Encoding.UTF8.GetString(ea.Body.ToArray());
                        Console.WriteLine($"{i},消费者:{index},队列{queueName}消费消息长度:{message.Length}");
                        Thread.Sleep(1000);
                        channel.BasicAck(ea.DeliveryTag, false); //消息ack确认,告诉mq这条队列处理完,可以从mq删除了
                        i++;
                    };
                    channel.BasicConsume(queueName, autoAck: false, consumer);
                }
            }
        }

如果根节点挂了,再往集群发送数据,RabbitMQ又会从其余的选一个作为根节点,就可能的情况是,多个节点都存有不同队列的数据。

到这里,可以看到普通集群并不可以高可用, 根节点挂了,在这个节点上的队列也不可用了。但三个节点都没问题的时候,可以提高并发和队列的负载。

要实现高可用,就要用到了镜像集群。

三、镜像集群

镜像集群,在每个节点上都同步一份镜像数据,相当于每个节点都有一份完整的数据,这样有节点宕机了,还能正常提供RabbitMQ服务。

变镜像集群很简单,在上面普通集群的基础上,在任意一个节点下执行

#把集群变成镜像集群
rabbitmqctl set_policy ha-all "^" '{"ha-mode":"all"}'

执行完,看回队列,多了ha标识。

四、HAProxy环境搭建。

1)下载

HAProxy 官方下载地址为:https://www.haproxy.org/,如果这个网站无法访问,也可以从https://src.fedoraproject.org/repo/pkgs/haproxy/上进行下载。

#下载haproxy
wget https://www.haproxy.org/download/2.4/src/haproxy-2.4.3.tar.gz

解压

#解压
tar xf haproxy-2.4.3.tar.gz

2)编译

安装gcc

yum install gcc

进入解压后根目录,执行下面的编译命令:

#进入haproxy-2.4.3目录后执行
make TARGET=linux-glibc  PREFIX=/usr/app/haproxy-2.4.3
make install PREFIX=/usr/app/haproxy-2.4.3

3)配置环境变量

#编辑文件
vi /etc/profile

#把这两项加上
export HAPROXY_HOME=/usr/app/haproxy-2.4.3
export PATH=$PATH:$HAPROXY_HOME/sbin

使得配置的环境变量立即生效:

source /etc/profile

4)负载均衡配置

新建配置文件haproxy.cfg,这里我新建的位置为:/etc/haproxy/haproxy.cfg,文件内容如下:

global
# 日志输出配置、所有日志都记录在本机,通过 local0 进行输出
log 127.0.0.1 local0 info
# 最大连接数
maxconn 4096
# 改变当前的工作目录
chroot /usr/app/haproxy-2.4.3
# 以指定的 UID 运行 haproxy 进程
uid 99
# 以指定的 GID 运行 haproxy 进程
gid 99
# 以守护进行的方式运行
daemon
# 当前进程的 pid 文件存放位置
pidfile /usr/app/haproxy-2.4.3/haproxy.pid

# 默认配置
defaults
# 应用全局的日志配置
log global
# 使用4层代理模式,7层代理模式则为"http"
mode tcp
# 日志类别
option tcplog
# 不记录健康检查的日志信息
option dontlognull
# 3次失败则认为服务不可用
retries 3
# 每个进程可用的最大连接数
maxconn 2000
# 连接超时
timeout connect 5s
# 客户端超时
timeout client 120s
# 服务端超时
timeout server 120s

# 绑定配置
listen rabbitmq_cluster
bind :5671
# 配置TCP模式
mode tcp
# 采用加权轮询的机制进行负载均衡
balance roundrobin
# RabbitMQ 集群节点配置
server rabbit1 rabbit1:5672 check inter 5000 rise 2 fall 3 weight 1
server rabbit2 rabbit2:5672 check inter 5000 rise 2 fall 3 weight 1
server rabbit3 rabbit3:5672 check inter 5000 rise 2 fall 3 weight 1

# 配置监控页面
listen monitor
bind :8100
mode http
option httplog
stats enable
stats uri /stats
stats refresh 5s

上传上去的,记得打开看一下换行符有没有出行这些符号,如果有要删掉,不然会报错。

负载均衡的主要配置在listen rabbitmq_cluster下,这里指定负载均衡的方式为加权轮询,同时定义好健康检查机制:

server rabbit1 rabbit1:5672 check inter 5000 rise 2 fall 3 weight 1

以上配置代表对地址为 rabbit1:5672 的 rabbit1 节点每隔 5 秒进行一次健康检查,如果连续两次的检查结果都是正常,则认为该节点可用,此时可以将客户端的请求轮询到该节点上;如果连续 3 次的检查结果都不正常,则认为该节点不可用。weight 用于指定节点在轮询过程中的权重。

5)启动服务

haproxy -f /etc/haproxy/haproxy.cfg

启动后可以在监控页面进行查看,端口为设置的 8100,完整地址为:http://172.16.2.84:8100/stats,页面情况如下:

所有节点都为绿色,代表节点健康。此时证明 HAProxy 搭建成功,并已经对 RabbitMQ 集群进行监控。

这里已经实现了RabbitMQ的负载均衡了,代码怎么通过Haproxy连接Rabbit集群呢,因为上面配置Haproxy暴露的端口是5671,所以Ip是Haproxy的ip:5671。

连接代码,可以通过haproxy1 或haproxy2都可以:

public static IConnection GetConnection()
        {

            ConnectionFactory factory = new ConnectionFactory
            {
                HostName = "172.16.2.84",//haproxy ip
                Port = 5671,//haproxy 端口
                UserName = "admin",//账号
                Password = "123456",//密码
                VirtualHost = "/" //虚拟主机
            };

            return factory.CreateConnection();
        }

五、KeepAlived 环境搭建

接着就可以搭建 Keepalived 来解决 HAProxy 故障转移的问题。这里我在 rabbit1 和 rabbit2 上安装 KeepAlived ,两台主机上的搭建的步骤完全相同,只是部分配置略有不同,具体如下:

官网:https://www.keepalived.org

1)安装

yum install -y keepalived

2)修改配置文件

安装了keepalived后,配置文件生成在/etc/keepalived/keepalived.conf

这里先对keepalived1上keepalived.conf配置文件进行修改,完整内容如下:

global_defs {
   # 路由id,主备节点不能相同
   router_id node1
}
​
# 自定义监控脚本
vrrp_script chk_haproxy {
    # 脚本位置
    script "/etc/keepalived/haproxy_check.sh"
    # 脚本执行的时间间隔
    interval 5
    weight 10
}
​
vrrp_instance VI_1 {
    # Keepalived的角色,MASTER 表示主节点,BACKUP 表示备份节点
    state MASTER
    # 指定监测的网卡,可以使用 ip addr 进行查看
    interface ens33
    # 虚拟路由的id,主备节点需要设置为相同
    virtual_router_id 1
    # 优先级,主节点的优先级需要设置比备份节点高
    priority 100
    # 设置主备之间的检查时间,单位为秒
    advert_int 1
    # 定义验证类型和密码
    authentication {
        auth_type PASS
        auth_pass 123456
    }
​
    # 调用上面自定义的监控脚本
    track_script {
        chk_haproxy
    }
​
    virtual_ipaddress {
        # 虚拟IP地址,可以设置多个
        172.16.2.200
    }
}

以上配置定义了 keepalived1上的 Keepalived 节点为 MASTER 节点,并设置对外提供服务的虚拟 IP 为 172.16.2.200。此外最主要的是定义了通过haproxy_check.sh来对 HAProxy 进行监控,这个脚本需要我们自行创建,内容如下:

#!/bin/bash
# 判断haproxy是否已经启动
if [ `ps -C haproxy --no-header | wc -l` -eq 0 ] ; then
    #如果没有启动,则启动
    haproxy -f /etc/haproxy/haproxy.cfg
fi
​
#睡眠3秒以便haproxy完全启动
sleep 3
​
#如果haproxy还是没有启动,此时需要将本机的keepalived服务停掉,以便让VIP自动漂移到另外一台haproxy
if [ `ps -C haproxy --no-header | wc -l` -eq 0 ]; then
    systemctl stop keepalived
fi

创建后为其赋予执行权限:

chmod +x /etc/keepalived/haproxy_check.sh

这个脚本主要用于判断 HAProxy 服务是否正常,如果不正常且无法启动,此时就需要将本机 Keepalived 关闭,从而让虚拟 IP 漂移到备份节点。

备份节点(keepalived2)的配置与主节点基本相同,但是需要修改其 state 为 BACKUP;同时其优先级 priority 需要比主节点低。完整配置如下:

global_defs {
   # 路由id,主备节点不能相同
   router_id node2
​
}
​
vrrp_script chk_haproxy {
    script "/etc/keepalived/haproxy_check.sh"
    interval 5
    weight 10
}
​
vrrp_instance VI_1 {
    # BACKUP 表示备份节点
    state BACKUP
    interface ens33
    virtual_router_id 1
    # 优先级,备份节点要比主节点低
    priority 50
    advert_int 1
    authentication {
        auth_type PASS
        auth_pass 123456
    }

    track_script {
        chk_haproxy
    }
​
    virtual_ipaddress {
        172.16.2.200
    }
}

haproxy_check.sh文件和keepalived1相同

3)启动服务

分别在KeepAlived1和KeepAlived2上启动KeepAlived服务,命令如下:

systemctl start  keepalived

启动后此时 keepAlived1 为主节点,可以在keepAlived1 上使用ip a命令查看到虚拟 IP 的情况:

此时只有 keepAlived1上是存在虚拟 IP 的,而keepAlived2 上是没有的。

4)验证故障转移

这里我们验证一下故障转移,因为按照我们上面的检测脚本,如果 HAProxy 已经停止且无法重启时 KeepAlived 服务就会停止,这里我们直接使用以下命令停止 Keepalived1 服务:

systemctl stop keepalived

此时再次使用ip a分别查看,可以发现 keepalived1上的 VIP 已经漂移到 keepalived2上,情况如下:

此时对外服务的 VIP 依然可用,代表已经成功地进行了故障转移。至此集群已经搭建成功,任何需要发送或者接受消息的客户端服务只需要连接到该 VIP 即可,示例如下:

public static IConnection GetConnection()
        {
            ConnectionFactory factory = new ConnectionFactory()
            {
                HostName = "172.16.2.200",//vip
                Port = 5671,//haproxy 端口
                UserName = "admin",//账号
                Password = "123456",//密码
                VirtualHost = "/" //虚拟主机
            };

            return factory.CreateConnection();
        }

到此这篇关于运用.net core中实例讲解RabbitMQ高可用集群构建的文章就介绍到这了,更多相关.net core RabbitMQ集群构建内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 运用.NetCore实例讲解RabbitMQ死信队列,延时队列

    目录 一.死信队列 二.延时队列 三.延时消息设置不同过期时间 四.延时消息用延时插件的方式实现 一.死信队列 描述:Q1队列绑定了x-dead-letter-exchange(死信交换机)为X2,x-dead-letter-routing-key(死信路由key)指向Q2(队列2) P(生产者)发送消息经X1(交换机1)路由到Q1(队列1),Q1的消息触发特定情况,自动把消息经X2(交换机2)路由到Q2(队列2),C(消费者)直接消息Q2的消息. 特定情况有哪些呢: 1.消息被拒(basic.

  • .Net使用RabbitMQ即时发消息Demo

    前言 最近项目要使用RabbitMQ,网上已经有很多优秀的文章了,百度百科对RabbitMQ阐述也非常明确,建议去看下,还有amqp协议.必须一提的是rabbitmq是由LShift提供的一个消息队列协议(AMQP)的开源实现,由以高性能.健壮以及可伸缩性出名的Erlang写成(因此也是继承了这些优点). 最近参考大神们的博客,自己做了一个RabbitMQ即时发消息的Demo.下面话不多说了,来一起看看详细的介绍吧. 步骤如下: 1.使用VS的NuGet安装包管理工具安装RabbitMQ.Cli

  • RabbitMQ .NET消息队列使用详解

    本文实例为大家分享了RabbitMQ .NET消息队列使用方法,供大家参考,具体内容如下 首先下载安装包,我都环境是win7 64位: 去官网下载 otp_win64_19.0.exe  和rabbitmq-server-3.6.3.exe安装好 然后开始编程了: (1)创建生产者类: class Program { private static void Main() { //建立RabbitMQ连接和通道 var connectionFactory = new ConnectionFacto

  • 如何用.NETCore操作RabbitMQ

    什么是RabbitMQ? RabbitMQ是由erlang语言开发的一个基于AMQP(Advanced Message Queuing Protocol)协议的企业级消息队列中间件.可实现队列,订阅/发布,路由,通配符等工作模式. 为什么要使用RabbitMQ? 异步处理:比如发送邮件,发送短信等不需要等待处理结果的操作 应用解耦:比如下单成功后,通知仓库发货,不需要等待仓库回应,通过消息队列去通知仓库,降低应用间耦合程序,可并行开发两个功能模块 流量削锋:在抢购或者其他的活动页,服务处于爆发式

  • 运用.net core中实例讲解RabbitMQ

    目录 一.RabbitMQ简介 (1) AMQP协议 (2)AMQP专业术语 (3)RabbitMQ整体架构 二.安装RabbitMQ 三.RabbitMQ六种队列模式在.NetCore中使用 (1)简单队列 (2)工作队列模式 (3)发布订阅模式 (4)路由模式(推荐使用) (5)主题模式 (6)RPC模式 总结 一.RabbitMQ简介 是一个开源的消息代理和队列服务器,用来通过普通协议在完全不同的应用之间共享数据,RabbitMQ是使用Erlang(高并发语言)语言来编写的,并且Rabbi

  • 运用.net core中实例讲解RabbitMQ高可用集群构建

    目录 一.集群架构简介 二.普通集群搭建 2.1 各个节点分别安装RabbitMQ 2.2 把节点加入集群 2.3 代码演示普通集群的问题 三.镜像集群 四.HAProxy环境搭建. 五.KeepAlived 环境搭建 一.集群架构简介 当单台 RabbitMQ 服务器的处理消息的能力达到瓶颈时,此时可以通过 RabbitMQ 集群来进行扩展,从而达到提升吞吐量的目的.RabbitMQ 集群是一个或多个节点的逻辑分组,集群中的每个节点都是对等的,每个节点共享所有的用户,虚拟主机,队列,交换器,绑

  • CentOS下RabbitMq高可用集群环境搭建教程

    CentOS下RabbitMq高可用集群环境搭建教程分享给大家. 准备工作 1.准备两台或多台安装有rabbitmq-server服务的服务器 我这里准备了两台,分别如下: 192.168.40.130 rabbitmq01 192.168.40.131 rabbitmq02 2.确保防火墙是关闭的3,官网参考资料 http://www.rabbitmq.com/clustering.html hosts映射 修改每台服务上的hosts文件(路径:/etc/hosts),设置成如下: 192.1

  • Nginx实现高可用集群构建(Keepalived+Haproxy+Nginx)

    1.组件及实现的功能 Keepalived:实现对Haproxy服务的高可用,并采用双主模型配置; Haproxy:实现对Nginx的负载均衡和读写分离; Nginx:实现对HTTP请求的高速处理; 2.架构设计图 3.Keepalived部署 在两个节点上都需要执行安装keepalived,命令如下: $ yum -y install keepalived 修改 172.16.25.109 节点上 keepalived.conf 文件配置,命令如下 $ vim /etc/keepalived/

  • 基于 ZooKeeper 搭建 Hadoop 高可用集群 的教程图解

    一.高可用简介 Hadoop 高可用 (High Availability) 分为 HDFS 高可用和 YARN 高可用,两者的实现基本类似,但 HDFS NameNode 对数据存储及其一致性的要求比 YARN ResourceManger 高得多,所以它的实现也更加复杂,故下面先进行讲解: 1.1 高可用整体架构 HDFS 高可用架构如下: 图片引用自: https://www.edureka.co/blog/how-to-set-up-hadoop-cluster-with-hdfs-hi

  • 基于mysql+mycat搭建稳定高可用集群负载均衡主备复制读写分离操作

    数据库性能优化普遍采用集群方式,oracle集群软硬件投入昂贵,今天花了一天时间搭建基于mysql的集群环境. 主要思路 简单说,实现mysql主备复制-->利用mycat实现负载均衡. 比较了常用的读写分离方式,推荐mycat,社区活跃,性能稳定. 测试环境 MYSQL版本:Server version: 5.5.53,到官网可以下载WINDWOS安装包. 注意:确保mysql版本为5.5以后,以前版本主备同步配置方式不同. linux实现思路类似,修改my.cnf即可. A主mysql.19

  • nginx高可用集群的实现过程

    这篇文章主要介绍了nginx高可用集群的实现过程,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 1.配置: (1)需要两台nginx服务器 (2)需要keepalived (3)需要虚拟ip 2.配置高可用的准备工作 (1)需要两台服务器192.168.180.113和192.168.180.112 (2)在两台服务器安装nginx (3)在两台服务器安装keepalived 3.在两台服务器安装keepalived (1)使用yum命令进行安

  • MySQL之高可用集群部署及故障切换实现

    一.MHA 1.概念 2.MHA 的组成 3.MHA 的特点 二.搭建MySQL+MHA 思路和准备工作 1.MHA架构 数据库安装 一主两从 MHA搭建 2.故障模拟 模拟主库失效 备选主库成为主库 原故障主库恢复重新加入到MHA成为从库 3.准备4台安装MySQL虚拟机 MHA高可用集群相关软件包 MHAmanager IP:192.168.221.30 MySQL1 IP:192.168.221.20 MySQL2 IP:192.168.221.100 MySQL3 IP: 192.168

  • Redis5之后版本的高可用集群搭建的实现

    一.安装redis 1.安装gcc yum install gcc 2.下载redis-5.0.8.tar.gz 3.把下载好的redis-5.0.8.tar.gz放在/gyu/software文件夹下,并解压 > tar xzf redis-5.0.8.tar.gz > cd redis-5.0.8 4.进入到解压好的redis-5.0.8目录下,进行编译与安装 > make & make install 5.启动并指定配置文件 > src/redis-server re

  • Redis高可用集群redis-cluster详解

    哨兵模式主要解决了手动切换主从节点的问题 1 , 哨兵模式的缺陷 .主从节点切换的时候存在访问瞬断,等待时间较长, .只有一个master节点提供写,slave节点提供读,尽管写的效率是10万/秒,在电商大促时,写的压力全部集中在master节点上. .master节点的内存不能设置的太大,否则持久化文件过大,影响主从同步 2,redis-cluster集群模式 Redis Cluster是社区版推出的Redis分布式集群解决方案,主要解决Redis分布式方面的需求,比如,当遇到单机内存,并发和

随机推荐