Python OpenCV形态学运算示例详解

目录
  • 1. 腐蚀 & 膨胀
    • 1.1什么是腐蚀&膨胀
    • 1.2 腐蚀方法 cv2.erode()
    • 1.3 膨胀方法 cv2.dilate()
  • 2. 开运算 & 闭运算
    • 2.1 简述
    • 2.2 开运算
    • 2.3 闭运算
  • 3. morphologyEx()方法
    • 3.1 morphologyEx()方法 介绍
    • 3.2 梯度运算
    • 3.3 顶帽运算
    • 3.4 黑帽运算

1. 腐蚀 & 膨胀

1.1什么是腐蚀&膨胀

腐蚀&膨胀是图像形态学中的两种核心操作

腐蚀可以描述为是让图像沿着自己的边界向内收缩

而膨胀则刚好与收缩相反,可以描述为是让图像沿着边界向内扩张。

这两种操作的逻辑和作用都和上篇讲到的使用滤波器做平滑处理有些类似,不同之处在于,腐蚀求的是滤波核内像素的最小值,而膨胀求的是最大值。并将计算出的值复制给锚点位置的像素。

作用上同平滑处理类似,可以消除噪声。

因为腐蚀求的是最小值,膨胀求的是最大值,所以经过腐蚀操作的图像的总体亮度会有所降低,而经过膨胀操作的图像的总体亮度会有所升高。

为方便示例,准备以下图片素材(test1.jpg):

1.2 腐蚀方法 cv2.erode()

python中OpenCV使用cv2.erode()方法实现腐蚀操作。

该方法语法如下:

cv2.erode(src, kernel, anchor=None, iterations=None, borderType=None, borderValue=None)

  • scr 原图像
  • kernel 腐蚀要用到的核
  • anchor 锚点
  • iterations 可选参数,腐蚀操作的迭代次数,默认为1。
  • borderType 边界样式,可选。
  • borderValue 边界值,可选。

其中kernel这个参数,核,需要手动取创建一个数组,而不能是像滤波器那样指定一个大小。

import cv2
import numpy as np
img = cv2.imread("test1.jpg")
# 创建3*3的数组作为滤波核
k = np.ones((3, 3), np.uint8)
dst = cv2.erode(img, k)
cv2.imshow("dst", dst)
cv2.waitKey()
cv2.destroyAllWindows()

腐蚀效果如下,如图,我们的鱼骨显得年代更久远了,鱼刺消失、变暗了相当一部分。

1.3 膨胀方法 cv2.dilate()

python中OpenCV使用cv2.dilate()方法实现膨胀操作。

该方法语法如下:

dilate(src, kernel, dst=None, anchor=None, iterations=None, borderType=None, borderValue=None)

可以看出,其参数用法同cv2.erode()的参数。

import cv2
import numpy as np
img = cv2.imread("test1.jpg")
# 创建16*16的数组作为核
k = np.ones((16, 16), np.uint8)
dst = cv2.dilate(img, k)
cv2.imshow("dst", dst)
cv2.waitKey()
cv2.destroyAllWindows()

膨胀效果如下,如图所示,图片众多鱼的亮度明显变高了。

这种图像效果,也被称之为“近视眼”效果。

2. 开运算 & 闭运算

2.1 简述

开运算就是将图像先进性腐蚀操作,再进行膨胀操作。其可以用来抹除图像外部的细节(噪声)。

闭运算则与之相反

闭运算是先对图像进行膨胀操作,在进行腐蚀操作。其可以用来抹除图像的内部细节(噪声)。

腐蚀和膨胀虽然是逆操作,但是开运算和闭运算都不会使图像恢复原状。

2.2 开运算

以 3 为核

代码示例如下

import cv2
import numpy as np
img = cv2.imread("test1.jpg")
k = np.ones((3, 3), np.uint8)
dst = cv2.erode(img, k)
dst = cv2.dilate(dst, k)
cv2.imshow("dst", dst)
cv2.waitKey()
cv2.destroyAllWindows()

2.3 闭运算

以 10 为核

代码示例如下

import cv2
import numpy as np
img = cv2.imread("test1.jpg")
k = np.ones((10, 10), np.uint8)
dst = cv2.dilate(img, k)
dst = cv2.erode(dst, k)
cv2.imshow("dst", dst)
cv2.waitKey()
cv2.destroyAllWindows()

3. morphologyEx()方法

3.1 morphologyEx()方法 介绍

在python中OpenCV还提供了morphologyEx()方法(形态学方法),可以用来完成所有常用的形态学运算。

morphologyEx()语法如下:

morphologyEx(src, op, kernel, dst=None, anchor=None, iterations=None, borderType=None, borderValue=None)

其中

  • scr 表示图像
  • op 表示操作类型
  • kernel 表示 核
  • anchor 表示锚点
  • iterations 为迭代次数,默认为1
  • borderType 是边界样式,默认1
  • borderValue 是边界值,默认1

可以供op选择的操作类型有:

参数值 描述
cv2.MORPH_ERODE 腐蚀
cv2.MORPH_DILATE 膨胀
cv2.MORPH_ OPEN 开运算,先腐蚀后膨胀
cv2.MORPH_CLOSE 闭运算,先膨胀后腐蚀
cv2.MORPH_GRADIENT 梯度运算,膨胀图减腐蚀图
cv2.MORPH_TOPHAT 顶帽运算,原始图减开运算图
cv2.MORPH_BLACKHAT 黑帽运算,闭运算图,减开运算图

接下来我们使用图片"test2.jpg"(下图)来继续下边的示例:

3.2 梯度运算

对“test2.jpg”以 4 为核做梯度运算:

import cv2
import numpy as np
img = cv2.imread("test2.jpg")
k = np.ones((4, 4), np.uint8)
dst = cv2.morphologyEx(img, cv2.MORPH_GRADIENT, k)
cv2.imshow("dst", dst)
cv2.waitKey()
cv2.destroyAllWindows()

梯度运算,即膨胀图减去腐蚀图,因为膨胀运算得到的图像中我物体比原图中的“大”,而腐蚀运算得到的图像中的物体是收缩过的,比原图中的“小”,所以膨胀的结果减去腐蚀的结果,会得到一个大概的、不精准的轮廓。

test2.jpg梯度运算执行效果如下:

3.3 顶帽运算

对“test2.jpg”以 4 为核做顶帽运算:

import cv2
import numpy as np
img = cv2.imread("test2.jpg")
k = np.ones((4, 4), np.uint8)
cv2.imshow("img", img)
dst = cv2.morphologyEx(img, cv2.MORPH_TOPHAT, k)
cv2.imshow("dst", dst)
cv2.waitKey()
cv2.destroyAllWindows()

顶帽运算,即原图减去开运算图,因为开运算抹除了图像的外部细节,所以顶帽运算即“有外部细节的图像 减去 无外部细节的图像”,得到的结果也就只剩外部细节了。

顶帽运算处理效果如下:

3.4 黑帽运算

对“test2.jpg”以 4 为核做顶帽运算:

import cv2
import numpy as np
img = cv2.imread("test2.jpg")
k = np.ones((4, 4), np.uint8)
dst = cv2.morphologyEx(img, cv2.MORPH_BLACKHAT, k)
cv2.imshow("dst", dst)
cv2.waitKey()
cv2.destroyAllWindows()

黑帽运算,即原图像的闭运算减去原图像

因为闭运算可以抹除图像的内部细节,所以黑帽运算即 “无内部细节的图像减去有内部细节的图像”,结果只剩下内部细节。

黑帽运算处理效果如下:

以上就是Python OpenCV形态学运算示例详解的详细内容,更多关于Python OpenCV形态学运算的资料请关注我们其它相关文章!

(0)

相关推荐

  • OpenCV半小时掌握基本操作之腐蚀膨胀

    目录 概述 腐蚀 膨胀 开运算 闭运算 [OpenCV]⚠️高手勿入! 半小时学会基本操作⚠️ 腐蚀膨胀 概述 OpenCV 是一个跨平台的计算机视觉库, 支持多语言, 功能强大. 今天小白就带大家一起携手走进 OpenCV 的世界. (第 10 课) 腐蚀 腐蚀 (Eroding) 会沿着图像边界向内收缩, 从而消除边界点. 原图: 例子: # 读取图片 img = cv2.imread("white.jpg") # 腐蚀 erode = cv2.erode(img, kernel=

  • opencv 形态学变换(开运算,闭运算,梯度运算)

    形态学里把腐蚀和膨胀单独拿了出来,其他操作(保括膨胀和腐蚀的组合操作)都叫形态学变换. opencv里有包:cv2.morphologyEx() morphology :译文 形态学 使用python +opencv讲解 开运算 开运算:对图像先进行腐蚀,然后对腐蚀后的图进行膨胀 morphologyEx 运算结果=cv2.morphologyEx(源图像img,cv2.MORPH_OPEN,卷积核k) cv2.MORPH_OPEN:开运算 import cv2 import numpy as

  • OpenCV-Python实现腐蚀与膨胀的实例

    什么是形态学 要了解腐蚀之前,我们需要了解一个概念:形态学. 形态学,又名数学形态学(Mathematical Morphology),是图像处理过程中一个非常重要的研究方向.形态学主要从图像内提取分量信息,该分量信息通常对于表达和描绘图像的形状具有重要的意义,通常是图像理解时所使用的最本质的形状特征. 例如,在识别手写数字时,能够通过形态学运算得到其骨架信息,在具体的识别时,仅针对其骨架进行运算即可.形态学处理在视觉检测,文字识别,医学图像处理,图像压缩编码等领域都有非常重要的应用. 形态学操

  • Python实例解析图像形态学运算技术

    1 图像形态学运算 在Python OpenCV图像处理之图像滤波特效详解中我们将图像滤波进行了以下分类: 邻域滤波 线性滤波 非线性滤波 频域滤波 低通滤波 高通滤波 在非线性滤波中,之前只介绍了中值滤波,事实上,还有一类非常常用的非线性滤波方法,称为图像形态学运算(Morphological operations). 图像形态学运算是一类基于图像形状运算的非线性滤波技术,其基本思想是利用一些特殊的结构元来测量或提取图像中相应的形状和特征,以便进一步进行图像分析和处理.这里结构元素就相当于我们

  • OpenCV+python实现膨胀和腐蚀的示例

    1,概念及原理: 膨胀(Dilating) (或) (1)将图像 A 与任意形状的内核 (B),通常为正方形或圆形,进行卷积. (2)内核 B 有一个可定义的 锚点, 通常定义为内核中心点. (3)进行膨胀操作时,将内核 B 划过图像A,将内核 B 覆盖区域的最大相素值提取,并代替锚点位置的相素.显然,这一最大化操作将会导致图像中的亮区开始"扩展" (因此有了术语膨胀 dilation ). 以3*3的内核为例: 腐蚀(Eroding) (与) (1)腐蚀在形态学操作家族里是膨胀操作的

  • Python OpenCV形态学运算示例详解

    目录 1. 腐蚀 & 膨胀 1.1什么是腐蚀&膨胀 1.2 腐蚀方法 cv2.erode() 1.3 膨胀方法 cv2.dilate() 2. 开运算 & 闭运算 2.1 简述 2.2 开运算 2.3 闭运算 3. morphologyEx()方法 3.1 morphologyEx()方法 介绍 3.2 梯度运算 3.3 顶帽运算 3.4 黑帽运算 1. 腐蚀 & 膨胀 1.1什么是腐蚀&膨胀 腐蚀&膨胀是图像形态学中的两种核心操作 腐蚀可以描述为是让图像沿

  • python opencv图像处理基本操作示例详解

    目录 1.图像基本操作 ①读取图像 ②显示图像 ③视频读取 ④图像截取 ⑤颜色通道提取及还原 ⑥边界填充 ⑦数值计算 ⑧图像融合 2.阈值与平滑处理 ①设定阈值并对图像处理 ②图像平滑-均值滤波 ③图像平滑-方框滤波 ④图像平滑-高斯滤波 ⑤图像平滑-中值滤波 3.图像的形态学处理 ①腐蚀操作 ②膨胀操作 ③开运算和闭运算 4.图像梯度处理 ①梯度运算 ②礼帽与黑帽 ③图像的梯度处理 5.边缘检测 ①Canny边缘检测 1.图像基本操作 ①读取图像 ②显示图像 该函数中,name是显示窗口的名字

  • python assert的用处示例详解

    使用assert断言是学习python一个非常好的习惯,python assert 断言句语格式及用法很简单.在没完善一个程序之前,我们不知道程序在哪里会出错,与其让它在运行最崩溃,不如在出现错误条件时就崩溃,这时候就需要assert断言的帮助.本文主要是讲assert断言的基础知识. python assert断言的作用 python assert断言是声明其布尔值必须为真的判定,如果发生异常就说明表达示为假.可以理解assert断言语句为raise-if-not,用来测试表示式,其返回值为

  • Python深度学习线性代数示例详解

    目录 标量 向量 长度.维度和形状 矩阵 张量 张量算法的基本性质 降维 点积 矩阵-矩阵乘法 范数 标量 标量由普通小写字母表示(例如,x.y和z).我们用 R \mathbb{R} R表示所有(连续)实数标量的空间. 标量由只有一个元素的张量表示.下面代码,我们实例化了两个标量,并使用它们执行一些熟悉的算数运算,即加法.乘法.除法和指数. import torch x = torch.tensor([3.0]) y = torch.tensor([2.0]) x + y, x * y, x

  • Python OpenCV机器学习之图像识别详解

    目录 背景 一.人脸识别 二.车牌识别 三.DNN图像分类 背景 OpenCV中也提供了一些机器学习的方法,例如DNN:本篇将简单介绍一下机器学习的一些应用,对比传统和前沿的算法,能从其中看出优劣: 一.人脸识别 主要有以下两种实现方法: 1.哈尔(Haar)级联法:专门解决人脸识别而推出的传统算法: 实现步骤: 创建Haar级联器: 导入图片并将其灰度化: 调用函数接口进行人脸识别: 函数原型: detectMultiScale(img,scaleFactor,minNeighbors) sc

  • 对python周期性定时器的示例详解

    一.用thread实现定时器 py_timer.py文件 #!/usr/bin/python #coding:utf-8 import threading import os import sys class _Timer(threading.Thread): def __init__(self, interval, function, args=[], kwargs={}): threading.Thread.__init__(self) self.interval = interval se

  • python音频处理的示例详解

    准备工作: 首先,我们需要 import 几个工具包,一个是 python 标准库中的 wave 模块,用于音频处理操作,另外两个是 numpy 和 matplot,提供数据处理函数. 一:读取本地音频数据 处理音频第一步是需要从让计算机"听到"声音,这里我们使用 python 标准库中自带的 wave模块进行音频参数的获取. (1) 导入 wave 模块 (2) 使用 wave 中的函数 open 打开音频文件,wave.open(file,mode)函数带有两个参数, 第一个 fi

  • python OpenCV 实现高斯滤波详解

    目录 一.高斯滤波 二.C++代码 三.python代码 四.结果展示 1.原始图像 2.5x5卷积 3.9x9卷积 一.高斯滤波    高斯滤波是一种线性平滑滤波,适用于消除高斯噪声,广泛应用于图像处理的减噪过程. [1] 通俗的讲,高斯滤波就是对整幅图像进行加权平均的过程,每一个像素点的值,都由其本身和邻域内的其他像素值经过加权平均后得到.高斯滤波的具体操作是:用一个模板(或称卷积.掩模)扫描图像中的每一个像素,用模板确定的邻域内像素的加权平均灰度值去替代模板中心像素点的值. 二.C++代码

  • Python模块glob函数示例详解教程

    目录 本文大纲 支持4个常用的通配符 1)glob()函数 2)iglob()函数 3)escape()函数 总结 本文大纲 glob模块也是Python标准库中一个重要的模块,主要用来查找符合特定规则的目录和文件,并将搜索的到的结果返回到一个列表中.使用这个模块最主要的原因就是,该模块支持几个特殊的正则通配符,用起来贼方便,这个将会在下方为大家进行详细讲解. 支持4个常用的通配符 使用glob模块能够快速查找我们想要的目录和文件,就是由于它支持*.**.? .[ ]这三个通配符,那么它们到底是

  • Python OpenCV绘制各类几何图形详解

    目录 一.绘制直线 二.绘制矩形 三.绘制圆形 四.绘制椭圆 五.绘制多边形 六.绘制文字 七.总结 一.绘制直线 在OpenCV中,绘制直线需要获取直线的起点和终点坐标,调用cv2.line()函数实现该功能.该函数原型如下所示: img = line(img, pt1, pt2, color[, thickness[, lineType[, shift]]]) – img表示需要绘制的那幅图像 – pt1表示线段第一个点的坐标 – pt2表示线段第二个点的坐标 – color表示线条颜色,需

随机推荐