Java实现快速并查集

在一些应用的问题中,需将n个不同的元素划分成一组不相交的集合。开始时,每个元素自成一格单元素集合,然后按一定顺序将属于同一组的元素的集合合并。其间要反复用到查询某个元素属于哪个集合的运算。适合于描述这类问题的抽象数据类型称为并查集。

1. 并查集的概述

并查集的数学模型是一组不相交的动态集合的集合S={A,B,C,...},它支持以下的运算:

(1)union(A,B):将集合A和B合并,其结果取名为A或B;

(2)find(x):找出包含元素x的集合,并返回该集合的名字。

在并查集中需要两个类型的参数:集合名字的类型和元素的类型。在许多情况下,可以用整数作为集合的名字。如果集合中共有n个元素,可以用范围【1:n】以内的整数表示元素。实现并查集的一个简单方法是使用数组表示元素及其所属子集的关系。其中,用数组下标表示元素,用数组单元记录该元素所属的子集名字。如果元素类型不是整型,则可以先构造一个映射,将每个元素映射成一个整数。这种映射可以用散列表或其他方式实现。

2. 并查集的实现

采用数结构实现并查集的基本思想是,每个集合用一棵树表示。树的结点用于存储集合中的元素名。每个树结点还存放一个指向其父结点的指针。数根结点处的元素代表该数所表示的集合。利用映射可以找到集合中所对应的数结点。

父亲数组是实现上述数结构的有效方法。

Java实现代码:

public class UnionFind {
 Node[] node; //父亲数组
 //并查集中的结点
 private static class Node{
 int parent;
 boolean root;

 private Node(){
 parent = 1;
 root = true;
 }
 }
 //将每个元素初始化为一颗单结点树
 public UnionFind(int n){
 node = new Node[n + 1];
 for(int e= 0; e <= n; e++){
 node[e] = new Node();
 }
 }
}

find运算就是从元素e相应的结点走到树根处,找出所在集合的名字。

public int find(int e){
 while(!node[e].root){
 e = node[e].parent;
 }
 return e;
 }

union运算,合并两个集合,只要将表示其中一个集合的树的数根改为表示另一个集合的树的数根的儿子结点。

public void union(int a, int b){
 node[a].parent += node[b].parent;
 node[b].root = false;
 node[b].parent = a;
 }

3. 快速并查集的实现

容易看出,在最坏情况下,合并可能使n个结点的树退化成一条链,导致对所有元素各执行一次find将耗时O(n^2)。可做出以下改进来加速find运算。

1.)小树合并到大树

在union操作中,将表示小树的数根改为表示大树的数根的儿子结点。于是并查集中每个结点至多被移动O(logn)次,从而每个结点到数根的距离不会超过O(logn)。所有,每次find运算只需O(logn)时间。

 /*
 * 合并两个集合(加速)
 * 将表示小树的数根改为表示大树的数根的儿子结点
 */
 public void union(int a, int b){
 if(node[a].parent < node[b].parent){
 node[b].parent += node[a].parent;
 node[a].root = false;
 node[a].parent = a;
 }else{
 node[a].parent += node[b].parent;
 node[b].root = false;
 node[b].parent = a;
 }
 }

2.)路径压缩技术

在执行find时,实际上找到了从一个结点到数根的一条路径。路径压缩就是把这条路上所有的结点都提升1层,以加快找到根结点的时间。

 /*
 * find运算(加速)
 * 从元素e相应的结点走到树根处,找出所在集合的名字
 */
 public int find(int e){
 int current = e, p ,gp;
 /*排除当前结点或其父结点为根的情况后,加速find*/
 if(node[current].root){
 return current;
 }
 p = node[current].parent;
 if(node[current].root){
 return p;
 }
 gp = node[current].parent;

 while(true){
 node[current].parent = gp;
 if(node[gp].root){
 return gp;
 }
 current = p;
 p = gp;
 gp = node[p].parent;
 }
 }

(并查集实现的详细代码及更多相关数据结构的代码均在git)

参考资料:

1.《算法设计与分析》

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Java实现并查集

    本文实例为大家分享了Java实现并查集的具体代码,供大家参考,具体内容如下 自下而上的树结构 接口 /** * @author Nino */ public interface UF { int size(); /** * 看两个元素是否相连 * @param p * @param q * @return */ boolean isConnected(int p, int q); /** * 将两个元素合并在一起,变成一个集合中的元素 * @param p * @param q */ void

  • Java使用HashMap实现并查集

    并查集的定义: 并查集,在一些有N个元素的集合应用问题中,我们通常是在开始时让每个元素构成一个单元素的集合,然后按一定顺序将属于同一组的元素所在的集合合并,其间要反复查找一个元素在哪个集合中.这一类问题近几年来反复出现在信息学的国际国内赛题中,其特点是看似并不复杂,但数据量极大,若用正常的数据结构来描述的话,往往在空间上过大,计算机无法承受;即使在空间上勉强通过,运行的时间复杂度也极高,根本就不可能在比赛规定的运行时间(1~3秒)内计算出试题需要的结果,只能用并查集来描述. 并查集是一种树型的数

  • java编程实现并查集的路径压缩代码详解

    首先看两张路径压缩的图片: 并查集(Union-find Sets)是一种非常精巧而实用的数据结构,它主要用于处理一些不相交集合的合并问题.一些常见的用途有求连通子图.求最小生成树的 Kruskal 算法和求最近公共祖先(Least Common Ancestors, LCA)等. 使用并查集时,首先会存在一组不相交的动态集合 S={S 1 ,S 2 ,⋯,S k } ,一般都会使用一个整数表示集合中的一个元素. 每个集合可能包含一个或多个元素,并选出集合中的某个元素作为代表.每个集合中具体包含

  • Java实现快速并查集

    在一些应用的问题中,需将n个不同的元素划分成一组不相交的集合.开始时,每个元素自成一格单元素集合,然后按一定顺序将属于同一组的元素的集合合并.其间要反复用到查询某个元素属于哪个集合的运算.适合于描述这类问题的抽象数据类型称为并查集. 1. 并查集的概述 并查集的数学模型是一组不相交的动态集合的集合S={A,B,C,...},它支持以下的运算: (1)union(A,B):将集合A和B合并,其结果取名为A或B: (2)find(x):找出包含元素x的集合,并返回该集合的名字. 在并查集中需要两个类

  • Java数据结构之并查集的实现

    目录 代码解析 代码应用 实际应用 并查集就是将原本不在一个集合里面的内容合并到一个集合中. 在实际的场景中用处不多. 除了出现在你需要同时去几个集合里面查询,避免出现查询很多次,从而放在一起查询的情况. 下面简单实现一个例子,我们来举例说明一下什么是并查集,以及究竟并查集解决了什么问题. 代码解析 package com.chaojilaji.book.andcheck; public class AndCheckSet { public static Integer getFather(in

  • Java数据机构中关于并查集的详解

    目录 概念 实现 初始化并查集 判断是不是同一个组 查找当前节点的代表节点 合并操作 本期文章源码:GitHub 一文彻底搞懂<并查集>! 概念 并查集是一种树型的数据结构,用于处理一些不相交集合的合并及查询问题(即所谓的并.查).比如说,我们可以用并查集来判断一个森林中有几棵树.某个节点是否属于某棵树等. 具体的用法,我们会以下一篇文章<图的相关算法>中,有一个克鲁斯卡尔算法,用于生成最小生成树,会用到并查集. 并查集的主要作用是求连通分支数(如果一个图中所有点都存在可达关系(直

  • 详解Java实现数据结构之并查集

    ​一.什么是并查集 对于一种数据结构,肯定是有自己的应用场景和特性,那么并查集是处理什么问题的呢? 并查集是一种树型的数据结构,用于处理一些不相交集合(disjoint sets)的合并及查询问题,常常在使用中以森林来表示.在一些有N个元素的集合应用问题中,我们通常是在开始时让每个元素构成一个单元素的集合,然后按一定顺序将属于同一组的元素所在的集合合并,其间要反复查找一个元素在哪个集合中.其特点是看似并不复杂,但数据量极大,若用正常的数据结构来描述的话,往往在空间上过大,计算机无法承受:即使在空

  • java并查集算法带你领略热血江湖

    目录 一.什么是并查集 二.深入理解并查集 三.实现并查集 四.真题训练 五.路径压缩优化 六.总结 你好,我是小黄,一名独角兽企业的Java开发工程师. 校招收获数十个offer,年薪均20W~40W. 感谢茫茫人海中我们能够相遇, 俗话说:当你的才华和能力,不足以支撑你的梦想的时候,请静下心来学习, 希望优秀的你可以和我一起学习,一起努力,实现属于自己的梦想. 一.什么是并查集 并查集被很多OIer认为是最简洁而优雅的数据结构之一,主要用于处理一些不相交集合的合并问题,并支持两种操作: 合并

  • Java实现并查集示例详解

    目录 题目 思路 find实现 join的实现 整体代码  题目 题目背景 若某个家族人员过于庞大,要判断两个是否是亲戚,确实还很不容易,现在给出某个亲戚关系图,求任意给出的两个人是否具有亲戚关系. 思路 对于该题而言,考察的是并查集,也就是小怪兽逐个找上级领导的思路,指导找到最终的Boss停止下来,如果两个怪兽要打架,需要问一问他们的上级领导,领导再问领导,逐级向上,最终发现它们属于同一个Boss的部署的话就不能再打架了,这道题同样的思路,如果斗罗大陆的一开始白沉香不知道唐三是亲戚的话,他们就

  • java 数据结构并查集详解

    目录 一.概述 二.实现 2.1 Quick Find实现 2.2 Quick Union实现 三.优化 3.1基于size的优化 3.2基于rank优化 3.2.1路径压缩(Path Compression ) 3.2.2路径分裂(Path Spliting) 3.2.3路径减半(Path Halving) 一.概述 并查集:一种树型数据结构,用于解决一些不相交集合的合并及查询问题.例如:有n个村庄,查询2个村庄之间是否有连接的路,连接2个村庄 两大核心: 查找 (Find) : 查找元素所在

随机推荐