详解OpenCV执行连通分量标记的方法和分析

目录
  • 1.OpenCV 连通分量标记和分析
    • 1.1 OpenCV 连通分量标记和分析函数
    • 1.2 项目结构
  • 2.案例实现
    • 2.1 使用 OpenCV 实现基本的连通分量标记
    • 2.2 完整代码
    • 2.3 过滤连通分量
    • 2.4 C++代码案例

在本教程中,您将学习如何使用 OpenCV 执行连通分量标记和分析。具体来说,我们将重点介绍 OpenCV 最常用的连通分量标记函数:cv2.connectedComponentsWithStats。

连通分量标记(也称为连通分量分析、斑点提取或区域标记)是图论的一种算法应用,用于确定二进制图像中“斑点”状区域的连通性。

我们经常在与使用轮廓相同的情况下使用连通分量分析;然而,连通分量标记通常可以让我们对二值图像中的斑点进行更细粒度的过滤。在使用轮廓分析时,我们经常受到轮廓层次结构的限制(即一个轮廓包含在另一个轮廓中)。通过连通分量分析,我们可以更轻松地分割和分析这些结构。

连通分量分析的一个很好的例子是计算二值(即阈值后的)车牌图像的连通分量,并根据它们的属性(例如宽度、高度、面积、solidity等)过滤斑点。这正是我们今天在这里要做的。

1.OpenCV 连通分量标记和分析

在本教程的第一部分,我们将回顾 OpenCV 提供的用于执行连通分量标记和分析的四个函数。这些函数中最受欢迎的是cv2.connectedComponentsWithStats。

首先,我们将配置我们的开发环境并查看我们的项目目录结构。

接下来,我们将实现两种形式的连通分量分析:

一种方法将演示如何使用 OpenCV 的连通分量标记和分析函数,计算每个连通分量的统计数据,然后单独提取/可视化每个连通分量。

第二种方法显示了连接分量分析的实际示例。我们对车牌进行阈值化,然后使用连通分量分析仅提取车牌字符。

1.1 OpenCV 连通分量标记和分析函数

OpenCV 提供了四种连通分量分析函数:

  • cv2.connectedComponents
  • cv2.connectedComponentsWithStats
  • cv2.connectedComponentsWithAlgorithm
  • cv2.connectedComponentsWithStatsWithAlgorithm

最流行的方法是 cv2.connectedComponentsWithStats,它返回以下信息:

  • 连通分量的边界框
  • 连通分量的面积(以像素为单位)
  • 连通分量的质心/中心 (x, y) 坐标

第一种方法,cv2.connectedComponents,和第二种方法一样,只是不返回上面的统计信息。在绝大多数情况下,您将需要统计信息,因此简单地使用 cv2.connectedComponentsWithStats 即可。

第三种方法 cv2.connectedComponentsWithAlgorithm 实现了更快、更有效的连通分量分析算法。

如果您使用并行处理支持编译 OpenCV,则 cv2.connectedComponentsWithAlgorithm 和 cv2.connectedComponentsWithStatsWithAlgorithm 将比前两个运行得更快。

但一般来说,坚持使用 cv2.connectedComponentsWithStats 直到您熟悉连通分量标记。

1.2 项目结构

在我们使用 OpenCV 实现连通分量标记和分析之前,让我们先来看看我们的项目目录结构。

我们将应用连通分量分析来自动过滤车牌 (license_plate.png) 中的字符。

为了完成这项任务并了解有关连通分量分析的更多信息,我们将实现两个 Python 脚本:

basic_connected_components.py:演示如何应用连通分量标记,提取每个组件及其统计数据,并在我们的屏幕上可视化它们。

filtering_connected_components.py:应用连通分量标记,通过检查每个连通分量的宽度、高度和面积(以像素为单位)过滤掉非牌照字符。

2.案例实现

2.1 使用 OpenCV 实现基本的连通分量标记

让我们开始使用 OpenCV 实现连通分量分析。

打开项目文件夹中的 basic_connected_components.py 文件,让我们开始工作:

# 导入相关包
# 导入必要的包
import argparse
import cv2

# 解析构建的参数解析器
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required=True, help="path to input image")
ap.add_argument("-c", "--connectivity", type=int, default=4, help="connectivity for connected analysis")
args = vars(ap.parse_args())  # 将参数转为字典格式

我们有两个命令行参数

–image:输入图像路径

–connectivity:4连通或者8连通

接下来,进行图像预处理操作

# 加载输入图像,将其转换为灰度,并对其进行阈值处理
image = cv2.imread(args["image"])
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]

阈值处理以后,将得到如下图像:

请注意车牌字符在黑色背景上显示为白色。但是,输入图像中也有一堆噪声也显示为前景(白色)。我们的目标是应用连通分量分析来过滤掉这些噪声区域,只留下车牌字符。

但在我们开始之前,让我们先学习如何使用 cv2.connectedComponentsWithStats 函数:

output = cv2.connectedComponentsWithStats(thresh, args["connectivity"], cv2.CV_32S)
(numLabels, labels, stats, centroids) = output

使用OpenCV的cv2.connectedComponentsWithStats 执行连通分量分析。我们在这里传入三个参数:

  • 阈值化后的图像
  • 4连通还是8连通
  • 数据类型(应该使用cv2.CV_32S)

然后 cv2.connectedComponentsWithStats 返回一个 4 元组:

  • 检测到的唯一标签总数(即总连通分量数)
  • 一个名为labels的掩码, 掩码与我们的输入阈值图像具有相同的空间维度。对于labels中的每个位置,我们都有一个整数 ID 值,该值对应于像素所属的连通分量。您将在本节后面学习如何过滤labels矩阵。
  • stats:每个连通分量的统计信息,包括边界框坐标和面积(以像素为单位)。
  • 每个连通分量的质心(即中心)(x,y)坐标。

让我们开始解析这些数值:

# 遍历每个连通分量
for i in range(0, numLabels):
    # 0表示的是背景连通分量,忽略
    if i == 0:
        text = "examining component {}/{} (background)".format(
            i + 1, numLabels)
    # otherwise, we are examining an actual connected component
    else:
        text = "examining component {}/{}".format(i + 1, numLabels)
    # 打印当前的状态信息
    print("[INFO] {}".format(text))
    # 提取当前标签的连通分量统计信息和质心
    x = stats[i, cv2.CC_STAT_LEFT]
    y = stats[i, cv2.CC_STAT_TOP]
    w = stats[i, cv2.CC_STAT_WIDTH]
    h = stats[i, cv2.CC_STAT_HEIGHT]
    area = stats[i, cv2.CC_STAT_AREA]
    (cX, cY) = centroids[i]

if/else语句说明:

  • 第一个连通分量,即ID 为 0,始终是背景。我们通常会忽略背景,但如果您需要它,请记住 ID=0 包含它。
  • 否则,如果 i > 0,那么我们知道该连通分量值得进一步探索。

解析我们的统计数据和质心列表:

  • 连通分量的起始x坐标
  • 连通分量的起始y坐标
  • 连通分量的宽(w)
  • 连通分量的高(h)
  • 连通分量的质心坐标(x,y)
    # 可视化边界框和当前连通分量的质心
    # clone原始图,在图上画当前连通分量的边界框以及质心
    output = image.copy()
    cv2.rectangle(output, (x, y), (x + w, y + h), (0, 255, 0), 3)
    cv2.circle(output, (int(cX), int(cY)), 4, (0, 0, 255), -1)

创建一个我们可以绘制的输出图像。然后我们将当前的连通分量的边界框绘制为绿色矩形,将质心绘制为红色圆圈。

我们的最终代码块演示了如何为当前连通分量创建掩码:

    # 创建掩码
    componentMask = (labels == i).astype("uint8") * 255
    # 显示输出图像和掩码
    cv2.imshow("Output", output)
    cv2.imshow("Connected Component", componentMask)
    cv2.waitKey(0)

首先在labels中找到与当前组件 ID 相等的所有位置。然后我们将结果转换为一个无符号的 8 位整数,其中背景值为 0,前景值为 255。最后显示原始图以及掩码图。

第一个连通分量实际上是我们的背景。我们通常会跳过,因为通常不需要背景。 然后显示其余连通分量。对于每个连通分量,我们绘制边界框(绿色矩形)和质心/中心(红色圆圈)。 您可能已经注意到,其中一些连接的组件是车牌字符,而另一些则只是“噪音”。我们将在下一部分解决这个问题。

2.2 完整代码

# 导入必要的包
import argparse
import cv2

# 解析构建的参数解析器
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", default="plate.jpg", help="path to input image")
ap.add_argument("-c", "--connectivity", type=int, default=4, help="connectivity for connected analysis")
args = vars(ap.parse_args())  # 将参数转为字典格式

# 加载输入图像,将其转换为灰度,并对其进行阈值处理
image = cv2.imread(args["image"])
cv2.imshow("src", image)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
cv2.imshow("threshold", thresh)

# 对阈值化后的图像应用连通分量分析
output = cv2.connectedComponentsWithStats(thresh, args["connectivity"], cv2.CV_32S)
(numLabels, labels, stats, centroids) = output

# 遍历每个连通分量
for i in range(0, numLabels):
    # 0表示的是背景连通分量,忽略
    if i == 0:
        text = "examining component {}/{} (background)".format(
            i + 1, numLabels)
    # otherwise, we are examining an actual connected component
    else:
        text = "examining component {}/{}".format(i + 1, numLabels)
    # 打印当前的状态信息
    print("[INFO] {}".format(text))
    # 提取当前标签的连通分量统计信息和质心
    x = stats[i, cv2.CC_STAT_LEFT]
    y = stats[i, cv2.CC_STAT_TOP]
    w = stats[i, cv2.CC_STAT_WIDTH]
    h = stats[i, cv2.CC_STAT_HEIGHT]
    area = stats[i, cv2.CC_STAT_AREA]
    (cX, cY) = centroids[i]

    # 可视化边界框和当前连通分量的质心
    # clone原始图,在图上画当前连通分量的边界框以及质心
    output = image.copy()
    cv2.rectangle(output, (x, y), (x + w, y + h), (0, 255, 0), 3)
    cv2.circle(output, (int(cX), int(cY)), 4, (0, 0, 255), -1)

    # 创建掩码
    componentMask = (labels == i).astype("uint8") * 255
    # 显示输出图像和掩码
    cv2.imshow("Output", output)
    cv2.imshow("Connected Component", componentMask)
    cv2.waitKey(0)

2.3 过滤连通分量

我们之前的代码示例演示了如何使用 OpenCV 提取连接的组件,但没有演示如何过滤它们。

import numpy as np
import argparse
import cv2

ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", default="plate.jpg", help="path to image")
ap.add_argument("-c", "--connectivity", type=int, default=4, help="connectivity for connected component analysis")

args = vars(ap.parse_args())

# 加载图像,转为灰度,二值化
image = cv2.imread(args["image"])
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
_, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_OTSU | cv2.THRESH_BINARY)

# 应用连通分量分析
output = cv2.connectedComponentsWithStats(thresh, connectivity=args["connectivity"], ltype=cv2.CV_32S)
(numLabels, labels, stats, centriods) = output

mask = np.zeros(gray.shape, dtype="uint8")

for i in range(1, numLabels):  # 忽略背景
    x = stats[i, cv2.CC_STAT_LEFT]  # [i, 0]
    y = stats[i, cv2.CC_STAT_TOP]  # [i, 1]
    w = stats[i, cv2.CC_STAT_WIDTH]  # [i, 2]
    h = stats[i, cv2.CC_STAT_HEIGHT]  # [i, 3]
    area = stats[i, cv2.CC_STAT_AREA]  # [i, 4]
    # 确保宽高以及面积既不太大也不太小
    keepWidth = w > 50 and w < 500
    keepHeight = h > 150 and h < 650
    keepArea = area > 500 and area < 25000
    # 我使用print语句显示每个连接组件的宽度、高度和面积,
    # 同时将它们单独显示在屏幕上。我记录了车牌字符的宽度、高度和面积,并找到了它们的最小/最大值,
    # 对于您自己的应用程序也应该这样做。

    if all((keepWidth, keepHeight, keepArea)):
        print("[INFO] keep connected component '{}'".format(i))
        componentMask = (labels == i).astype("uint8") * 255
        mask = cv2.bitwise_or(mask, componentMask)

cv2.imshow("Image", image)
cv2.imshow("Chracters", mask)
cv2.waitKey(0)

如果我们正在构建一个自动牌照/车牌识别(ALPR/ANPR)系统,我们将获取这些字符,然后将它们传递给光学字符识别(OCR)算法进行识别。但这一切都取决于我们是否能够将字符二值化并提取它们,连通分量分析使我们能够做到这一点!

2.4 C++代码案例

#include <opencv2/core/utility.hpp>
#include "opencv2/imgproc.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/highgui.hpp"
#include <iostream>
using namespace cv;
using namespace std;
Mat img;
int threshval = 100;
static void on_trackbar(int, void*)
{
    Mat bw = threshval < 128 ? (img < threshval) : (img > threshval);
    Mat labelImage(img.size(), CV_32S);
    int nLabels = connectedComponents(bw, labelImage, 8);
    std::vector<Vec3b> colors(nLabels);
    colors[0] = Vec3b(0, 0, 0);//background
    for(int label = 1; label < nLabels; ++label){
        colors[label] = Vec3b( (rand()&255), (rand()&255), (rand()&255) );
    }
    Mat dst(img.size(), CV_8UC3);
    for(int r = 0; r < dst.rows; ++r){
        for(int c = 0; c < dst.cols; ++c){
            int label = labelImage.at<int>(r, c);
            Vec3b &pixel = dst.at<Vec3b>(r, c);
            pixel = colors[label];
         }
     }
    imshow( "Connected Components", dst );
}
int main( int argc, const char** argv )
{
    CommandLineParser parser(argc, argv, "{@image|stuff.jpg|image for converting to a grayscale}");
    parser.about("\nThis program demonstrates connected components and use of the trackbar\n");
    parser.printMessage();
    cout << "\nThe image is converted to grayscale and displayed, another image has a trackbar\n"
            "that controls thresholding and thereby the extracted contours which are drawn in color\n";
    String inputImage = parser.get<string>(0);
    img = imread(samples::findFile(inputImage), IMREAD_GRAYSCALE);
    if(img.empty())
    {
        cout << "Could not read input image file: " << inputImage << endl;
        return EXIT_FAILURE;
    }
    imshow( "Image", img );
    namedWindow( "Connected Components", WINDOW_AUTOSIZE);
    createTrackbar( "Threshold", "Connected Components", &threshval, 255, on_trackbar );
    on_trackbar(threshval, 0);
    waitKey(0);
    return EXIT_SUCCESS;
}

到此这篇关于详解OpenCV执行连通分量标记的方法和分析的文章就介绍到这了,更多相关OpenCV连通分量标记内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 使用OpenCV获取图片连通域数量,并用不同颜色标记函

    一,原图和效果图 二,代码 //#########################产生随机颜色######################### cv::Scalar icvprGetRandomColor() { uchar r = 255 * (rand() / (1.0 + RAND_MAX)); uchar g = 255 * (rand() / (1.0 + RAND_MAX)); uchar b = 255 * (rand() / (1.0 + RAND_MAX)); return

  • OpenCV根据面积筛选连通域学习示例

    目录 学习目标: 示例代码 学习目标: 对二值图进行分析,设定最大最小面积区间 保留该面积区间内的区域 示例代码 //src为二值图,minArea.maxArea为面积阈值,dest为结果图像 void connectionAreaSelect(Mat src, int minArea, int maxArea, Mat &dest) { Mat labels, stats, centroids, img_color; //连通域计算 int nccomps = connectedCompon

  • OpenCV实现图像连通域

    图像的连通域是指图像中具有相同像素值并且位置相邻的像素组成的区域,连通域分析是指在图像中寻找出彼此互相独立的连通域并将其标记出来. 一般情况下,一个连通域内只包含一个像素值,因此为了防止像素值波动对提取不同连通域的影响,连通域分析常处理的是二值化后的图像. 4-邻域和8-邻域: 常用的图像邻域分析法有两遍扫描法和种子填充法.两遍扫描法会遍历两次图像,第一次遍历图像时会给每一个非0像素赋予一个数字标签,当某个像素的上方和左侧邻域内的像素已经有数字标签时,取两者中的最小值作为当前像素的标签,否则赋予

  • Python OpenCV 图像区域轮廓标记(框选各种小纸条)

    学在前面 上篇 OpenCV 博客原计划完成一个 识别银行卡号的项目,但是写的过程中发现,技术储备不足,我无法在下述图片中,提取出卡号区域,也就无法进行后续的识别了,再次意识到了自己技术还不达标,继续学习.完不成,就实现其它学习项目. 轮廓识别实战 先看一下最终实现的效果,针对一张图片(该图片前景色和背景色差异较大),进行轮廓标记. 图片基本处理 import cv2 as cv src = cv.imread("./demo.jpg") gray = cv.cvtColor(src,

  • OpenCV HSV颜色识别及HSV基本颜色分量范围

    一般对颜色空间的图像进行有效处理都是在HSV空间进行的,然后对于基本色中对应的HSV分量需要给定一个严格的范围,下面是通过实验计算的模糊范围(准确的范围在网上都没有给出). H:  0 - 180 S:  0 - 255 V:  0 - 255 此处把部分红色归为紫色范围: 目前在计算机视觉领域存在着较多类型的颜色空间(color space).HSL和HSV是两种最常见的圆柱坐标表示的颜色模型,它重新影射了RGB模型,从而能够视觉上比RGB模型更具有视觉直观性. HSV颜色空间  HSV(hu

  • OpenCV连通域数量统计学习示例

    目录 学习目标: 核心代码 代码执行说明 学习目标: 1.输入图像为分割结果图像 2.根据种子填充法思路,遍历图像,得到每个连通域外接矩形坐标信息.面积信息 核心代码 /* Input: src: 待检测连通域的二值化图像 Output: dst: 标记后的图像 featherList: 连通域特征的清单(可自行查阅文档) return: 连通域数量. */ int connectionDetect(Mat &src, Mat &dst, vector<Feather> &am

  • 详解OpenCV执行连通分量标记的方法和分析

    目录 1.OpenCV 连通分量标记和分析 1.1 OpenCV 连通分量标记和分析函数 1.2 项目结构 2.案例实现 2.1 使用 OpenCV 实现基本的连通分量标记 2.2 完整代码 2.3 过滤连通分量 2.4 C++代码案例 在本教程中,您将学习如何使用 OpenCV 执行连通分量标记和分析.具体来说,我们将重点介绍 OpenCV 最常用的连通分量标记函数:cv2.connectedComponentsWithStats. 连通分量标记(也称为连通分量分析.斑点提取或区域标记)是图论

  • 详解opencv去除背景算法的方法比较

    目录 背景减除法 (1)BackgroundSubtractorMOG (2)BackgroundSubtractorMOG2 (3)BackgroundSubtractorGMG 帧差法 最近做opencv项目时,使用肤色分割的方法检测目标物体时,背景带来的干扰非常让人头痛.于是先将背景分割出去,将影响降低甚至消除.由于初次接触opencv,叙述不当的地方还请指正. 背景减除法 (以下文字原文来源于https://docs.opencv.org/3.4.7/d8/d38/tutorial_bg

  • 详解OpenCV实现特征提取的方法

    目录 前言 1. 颜色 2. 形状 3. 纹理 a. GLCM b.  LBP 结论 前言 如何从图像中提取特征?第一次听说“特征提取”一词是在 YouTube 上的机器学习视频教程中,它清楚地解释了我们如何在大型数据集中提取特征. 很简单,数据集的列就是特征.然而,当我遇到计算机视觉主题时,当听说我们将从图像中提取特征时,吃了一惊.是否开始浏览图像的每一列并取出每个像素? 一段时间后,明白了特征提取在计算机视觉中的含义.特征提取是降维过程的一部分,其中,原始数据的初始集被划分并减少到更易于管理

  • 详解golang执行Linux shell命令完整场景下的使用方法

    目录 1. 执行命令并获得输出结果 2. 将stdout和stderr分别处理 3. 异步执行命令 4. 执行时带上环境变量 5. 预先检查命令是否存在 6. 两个命令依次执行,管道通信 7. 按行读取输出内容 8. 获得exit code 1. 执行命令并获得输出结果 CombinedOutput() 执行程序返回 standard output and standard error func main() { cmd := exec.Command("ls", "-lah

  • 详解Kotlin中的变量和方法

    详解Kotlin中的变量和方法 变量 Kotlin 有两个关键字定义变量:var 和 val, 变量的类型在后面. var 定义的是可变变量,变量可以被重复赋值.val 定义的是只读变量,相当于java的final变量. 变量的类型,如果可以根据赋值推测,可以省略. var name: String = "jason" name = "jame" val max = 10 常量 Java 定义常量用关键字 static final, Kotlin 没有static,

  • 详解 MySQL 执行计划

    EXPLAIN语句提供有关MySQL如何执行语句的信息.EXPLAIN与SELECT,DELETE,INSERT,REPLACE和UPDATE语句一起使用. EXPLAIN为SELECT语句中使用的每个表返回一行信息.它按照MySQL在处理语句时读取它们的顺序列出了输出中的表. MySQL使用嵌套循环连接方法解析所有连接.这意味着MySQL从第一个表中读取一行,然后在第二个表,第三个表中找到匹配的行,依此类推.处理完所有表后,MySQL输出所选列,并通过表列表回溯,直到找到一个表,其中有更多匹配

  • 详解Vue开发网站seo优化方法

    因为用了vue等js的数据绑定机制来展示页面数据,爬虫获取到的html是模型页面而不是最终数据的渲染页面,搜索引擎是不回去执行请求到的js.vue的项目都是ajax请求数据,引擎爬虫进入页面获取不到文字内容,现在大多数解决方案是不采用ajax渲染数据,而是采用server端渲染,也就是所谓的SSR. 目前基于vue的方案是Nuxt.js,同类型的也有React版的Nuxt.js所以服务端渲染就是尽量在服务器发送到浏览器前,页面上是有数据可让爬虫进行爬取 方法一.利用prerender-spa-p

  • 详解pytest实现mark标记功能详细介绍

    mark标记 ​在实际工作中,我们要写的自动化用例会比较多,也不会都放在一个py文件中,如果有几十个py文件,上百个方法,而我们只想运行当中部分的用例时怎么办? ​pytest提供了一个非常好用的mark功能,可以给测试用例打上各种各样的标签,运行用例时可以指定运行某个标签.mark功能作用就是灵活的管理和运行测试用例. ​标签既可以打到方法上,也可以打到类上,标记的两种方式: 直接标记类或方法或函数:@pytest.mark.标签名 类属性:pytestmark = [pytest.mark.

  • 详解OpenCV自适应直方图均衡化的应用

    目录 介绍 主要代码 比较 CLAHE 和直方图均衡化 介绍 在<直方图均衡化详解>中,我们已经了解的直方图均衡化的基本概念,并且可以使用 cv2.equalizeHist() 函数执行直方图均衡. 在本节中,将介绍如何应用对比度受限的自适应直方图均衡化 ( Contrast Limited Adaptive Histogram Equalization, CLAHE ) 来均衡图像,CLAHE 是自适应直方图均衡化( Adaptive Histogram Equalization, AHE

  • ThinkPHP函数详解之M方法和R方法

    首先给大家介绍ThinkPHP函数详解:M方法 M方法用于实例化一个基础模型类,和D方法的区别在于: 1.不需要自定义模型类,减少IO加载,性能较好: 2.实例化后只能调用基础模型类(默认是Model类)中的方法: 3.可以在实例化的时候指定表前缀.数据库和数据库的连接信息: D方法的强大则体现在你封装的自定义模型类有多强,不过随着新版ThinkPHP框架的基础模型类的功能越来越强大,M方法也比D方法越来越实用了. M方法的调用格式: M('[基础模型名:]模型名','数据表前缀','数据库连接

随机推荐