pytorch查看通道数 维数 尺寸大小方式

查看tensor

x.shape # 尺寸
x.size() # 形状
x.ndim # 维数

例如

import torch
parser = argparse.ArgumentParser(description='PyTorch')
parser.add_argument('--img_w', default=144, type=int, metavar='imgw', help='img width')
parser.add_argument('--img_h', default=288, type=int, metavar='imgh', help='img height')
parser.add_argument('--batch-size', default=32, type=int,metavar='B', help='training batch size')
parser.add_argument('--test-batch', default=64, type=int, metavar='tb', help='testing batch size')

class net(nn.Module):
 def __init__(self, arch='resnet18'):
 super(net, self).__init__()
 model_ft = models.resnet50(pretrained=True)
 self.visible = model_ft

 def forward(self, x):
 print(x.shape)
 print(x.size())
 print(x.ndim)

 input = self.visible.conv1(x)

 print(input.shape)
 print(input.size())
 print(input.ndim)

从左至右起,32表示训练集batch_size大小,3是图像通道数,288是图像高度,144是图像宽度,图像尺寸 288*144,维度个数是4。很多博客在介绍论文时候,没有准确表达这些参数名称,往往出现张冠李戴,导致读者后续使用过程中被老师ma

经过标准resnet50第一层卷积后,结果是:32表示训练集batch_size大小,64是图像通道数,72是图像高度,36是图像宽度,图像尺寸72*36,维数是4

补充知识:pytorch中与维度/变换相关的几个函数

torch.size ()

先说torch.size()函数,因为后面的方法都会用这个方法看到变换后的矩阵的维度

通过该方法,可以查看当前Tensor的维度,用法也很简单:

>>>import torch
>>>a = torch.Tensor([[[1, 2, 3], [4, 5, 6]]])
>>>a.size()
torch.Size([1, 2, 3])

torch.view()

官方文档中的解释:

简单说,把原本的tensor尺寸,转变为你想要的尺寸,例如原尺寸为23,现在可以转为32或16等,但一定要保证等式成立,不能目标尺寸为33

此外,也可以设其中一个尺寸为-1,表示机器内部自己计算,但同时只能有一个为-1,用法如下:

>>> b=a.view(-1, 3, 2)
>>> b
tensor([[[1., 2.],
  [3., 4.],
  [5., 6.]]])
>>> b.size()
torch.Size([1, 3, 2])

torch.squeeze() / torch.unsqueeze()

torch.squeeze(n)函数表示压缩tensor中第n维为1的维数,比如下面第一个,b.squeeze(2).size(),原始的b为上面的torch.Size([1, 3, 2]),第二维是2≠1,所以不压缩,尺寸保持不变;而若b.squeeze(0).size(),则发现第一维为1,因此压缩为3x2的tensor

>>> b.squeeze(2).size()
torch.Size([1, 3, 2])
>>> b.squeeze(0).size()
torch.Size([3, 2])

相反的,torch.unsqueeze(n)则是在第n维增加一个维数=1,如下,表示在原始的b的第二维增加一维,则尺寸变为1 * 3 * 1 * 2

>>> b.unsqueeze(2).size()
torch.Size([1, 3, 1, 2])
>>> b.unsqueeze(2)
tensor([[[[1., 2.]],

  [[3., 4.]],

  [[5., 6.]]]])

torch.permute()

这个函数表示,将原始的tensor,按照自己期望的位置重新排序,例如原始tensor的第0、1、2维分别是1、3、2,那么当我执行permute(2, 0, 1),则将第三维放在最前,第一维放在中间,第二维放在最后,也就变成了2 * 1 * 3,注意这里表示的维数的index,而不是具体几维:

>>> b.permute(2, 0, 1).size()
torch.Size([2, 1, 3])
>>> b.permute(2, 0, 1)
tensor([[[1., 3., 5.]],

 [[2., 4., 6.]]])

暂时只想到这些,若有错误还请指正,或有其他相关函数,我也将持续更新。

以上这篇pytorch查看通道数 维数 尺寸大小方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • pytorch之ImageFolder使用详解

    pytorch之ImageFolder torchvision已经预先实现了常用的Dataset,包括前面使用过的CIFAR-10,以及ImageNet.COCO.MNIST.LSUN等数据集,可通过诸如torchvision.datasets.CIFAR10来调用.在这里介绍一个会经常使用到的Dataset--ImageFolder. ImageFolder假设所有的文件按文件夹保存,每个文件夹下存储同一个类别的图片,文件夹名为类名,其构造函数如下: ImageFolder(root, tra

  • PyTorch中Tensor的维度变换实现

    对于 PyTorch 的基本数据对象 Tensor (张量),在处理问题时,需要经常改变数据的维度,以便于后期的计算和进一步处理,本文旨在列举一些维度变换的方法并举例,方便大家查看. 维度查看:torch.Tensor.size() 查看当前 tensor 的维度 举个例子: >>> import torch >>> a = torch.Tensor([[[1, 2], [3, 4], [5, 6]]]) >>> a.size() torch.Size

  • pytorch之Resize()函数具体使用详解

    Resize函数用于对PIL图像的预处理,它的包在: from torchvision.transforms import Compose, CenterCrop, ToTensor, Resize 使用如: def input_transform(crop_size, upscale_factor): return Compose([ CenterCrop(crop_size), Resize(crop_size // upscale_factor), ToTensor(), ]) 而Resi

  • pytorch查看通道数 维数 尺寸大小方式

    查看tensor x.shape # 尺寸 x.size() # 形状 x.ndim # 维数 例如 import torch parser = argparse.ArgumentParser(description='PyTorch') parser.add_argument('--img_w', default=144, type=int, metavar='imgw', help='img width') parser.add_argument('--img_h', default=288

  • pytorch 转换矩阵的维数位置方法

    例如: preds = to_numpy(preds)#preds是[2985x16x2] preds = preds.transpose(2, 1, 0)#preds[2x16x2985] 以上这篇pytorch 转换矩阵的维数位置方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.

  • python查看矩阵的行列号以及维数方式

    print(X.shape):查看矩阵的行列号 print(len(X)):查看矩阵的行数 print(X.ndim):查看矩阵的维数 1 查看矩阵的行列号 2 查看矩阵的行数 3 查看矩阵的维数 补充知识:Python之numpy模块的添加及矩阵乘法的维数问题 在Python中,numpy 模块是需要自己安装的,在安装编程软件时,默认安装了pip,因此我们可以用pip命令来安装 numpy模块. 首先打开电脑的"cmd.exe",如下图所示: 在这里输入"pip insta

  • python保存二维数组到txt文件中的方法

    一个非常繁琐粗暴的方法,python属于入门级水平,就酱先备份一下,如果有更好的方法再更新 arrs=[[2,15,48,4,5],[6,7,6,4,1],[2,3,6,6,7],[4,6,8,11,2]] ARRS = [] f=open('testARRS.txt','w+') for i in range(4): jointsFrame = arrs[i] #每行 ARRS.append(jointsFrame) for Ji in range(5): strNum = str(joint

  • numpy按列连接两个维数不同的数组方式

    合并两个维数不同的ndarray 假设我们有一个3×2 numpy数组: x = array(([[1,2], [3, 4], [5,6]])) 现在需要把它与一个一维数组: y = array(([7, 8,9])) 通过将其添加到行的末尾,连接为一个3×3 numpy数组,如下所示: array([[1,2,7], [3,4,8], [5,6,9]]) 在numpy中按列连接的方法是: hstack((x,y)) 但是这不行,会报错: ValueError: arrays must have

  • Tensorflow获取张量Tensor的具体维数实例

    获取Tensor的维数 >>> import tensorflow as tf >>> tf.__version__ '1.2.0-rc1' >>> x=tf.placeholder(dtype=float32,shape=[1,2,3,4]) >>> x=tf.placeholder(dtype=tf.float32,shape=[1,2,3,4]) >>> x.shape TensorShape([Dimensi

  • pytorch查看网络参数显存占用量等操作

    1.使用torchstat pip install torchstat from torchstat import stat import torchvision.models as models model = models.resnet152() stat(model, (3, 224, 224)) 关于stat函数的参数,第一个应该是模型,第二个则是输入尺寸,3为通道数.我没有调研该函数的详细参数,也不知道为什么使用的时候并不提示相应的参数. 2.使用torchsummary pip in

  • pytorch nn.Conv2d()中的padding以及输出大小方式

    我就废话不多说了,直接上代码吧! conv1=nn.Conv2d(1,2,kernel_size=3,padding=1) conv2=nn.Conv2d(1,2,kernel_size=3) inputs=torch.Tensor([[[[1,2,3], [4,5,6], [7,8,9]]]]) print("input size: ",inputs.shape) outputs1=conv1(inputs) print("output1 size: ",outp

  • Python实现更改图片尺寸大小的方法(基于Pillow包)

    本文实例讲述了Python实现更改图片尺寸大小的方法.分享给大家供大家参考,具体如下: 1.PIL包推荐Pillow. 2.源码: #encoding=utf-8 #author: walker #date: 2014-05-15 #function: 更改图片尺寸大小 import os import os.path from PIL import Image ''' filein: 输入图片 fileout: 输出图片 width: 输出图片宽度 height:输出图片高度 type:输出图

  • Android编程获取组件尺寸大小的方法

    本文实例讲述了Android编程获取组件尺寸大小的方法.分享给大家供大家参考,具体如下: 在oncreate()中利用view.getWidth()或是view.getHeiht()来获取view的宽和高,看似没有问题,其实他们去得值是0,并不是你想要的结果? 这是为什么呢? 在调用oncreate()方法时,界面处于不可见状态,内存加载组件还没有绘制出来,你是无法获取他的尺寸. 那如何在绘制组件之前能获取到该组件的尺寸大小呢? 这里有三种方法,经过验证的: 方法一 : //测量方法 int w

随机推荐