pytorch中的weight-initilzation用法

pytorch中的权值初始化

官方论坛对weight-initilzation的讨论

torch.nn.Module.apply(fn)

torch.nn.Module.apply(fn)
# 递归的调用weights_init函数,遍历nn.Module的submodule作为参数
# 常用来对模型的参数进行初始化
# fn是对参数进行初始化的函数的句柄,fn以nn.Module或者自己定义的nn.Module的子类作为参数
# fn (Module -> None) – function to be applied to each submodule
# Returns: self
# Return type: Module

例子:

def weights_init(m):
 classname = m.__class__.__name__
 if classname.find('Conv') != -1:
  m.weight.data.normal_(0.0, 0.02)
  # m.weight.data是卷积核参数, m.bias.data是偏置项参数
 elif classname.find('BatchNorm') != -1:
  m.weight.data.normal_(1.0, 0.02)
  m.bias.data.fill_(0)

netG = _netG(ngpu) # 生成模型实例
netG.apply(weights_init) # 递归的调用weights_init函数,遍历netG的submodule作为参数
#-*-coding:utf-8-*-
import torch
from torch.autograd import Variable

# 对模型参数进行初始化
# 官方论坛链接:https://discuss.pytorch.org/t/weight-initilzation/157/3

# 方法一
# 单独定义一个weights_init函数,输入参数是m(torch.nn.module或者自己定义的继承nn.module的子类)
# 然后使用net.apply()进行参数初始化
# m.__class__.__name__ 获得nn.module的名字
# https://github.com/pytorch/examples/blob/master/dcgan/main.py#L90-L96
def weights_init(m):
 classname = m.__class__.__name__
 if classname.find('Conv') != -1:
  m.weight.data.normal_(0.0, 0.02)
 elif classname.find('BatchNorm') != -1:
  m.weight.data.normal_(1.0, 0.02)
  m.bias.data.fill_(0)

netG = _netG(ngpu) # 生成模型实例
netG.apply(weights_init) # 递归的调用weights_init函数,遍历netG的submodule作为参数

# function to be applied to each submodule

# 方法二
# 1. 使用net.modules()遍历模型中的网络层的类型 2. 对其中的m层的weigth.data(tensor)部分进行初始化操作
# Another initialization example from PyTorch Vision resnet implementation.
# https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py#L112-L118
class ResNet(nn.Module):
 def __init__(self, block, layers, num_classes=1000):
  self.inplanes = 64
  super(ResNet, self).__init__()
  self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
        bias=False)
  self.bn1 = nn.BatchNorm2d(64)
  self.relu = nn.ReLU(inplace=True)
  self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
  self.layer1 = self._make_layer(block, 64, layers[0])
  self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
  self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
  self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
  self.avgpool = nn.AvgPool2d(7, stride=1)
  self.fc = nn.Linear(512 * block.expansion, num_classes)
  # 权值参数初始化
  for m in self.modules():
   if isinstance(m, nn.Conv2d):
    n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
    m.weight.data.normal_(0, math.sqrt(2. / n))
   elif isinstance(m, nn.BatchNorm2d):
    m.weight.data.fill_(1)
    m.bias.data.zero_()

# 方法三
# 自己知道网络中参数的顺序和类型, 然后将参数依次读取出来,调用torch.nn.init中的方法进行初始化
net = AlexNet(2)
params = list(net.parameters()) # params依次为Conv2d参数和Bias参数
# 或者
conv1Params = list(net.conv1.parameters())
# 其中,conv1Params[0]表示卷积核参数, conv1Params[1]表示bias项参数
# 然后使用torch.nn.init中函数进行初始化
torch.nn.init.normal(tensor, mean=0, std=1)
torch.nn.init.constant(tensor, 0)

# net.modules()迭代的返回: AlexNet,Sequential,Conv2d,ReLU,MaxPool2d,LRN,AvgPool3d....,Conv2d,...,Conv2d,...,Linear,
# 这里,只有Conv2d和Linear才有参数
# net.children()只返回实际存在的子模块: Sequential,Sequential,Sequential,Sequential,Sequential,Sequential,Sequential,Linear

# 附AlexNet的定义
class AlexNet(nn.Module):
 def __init__(self, num_classes = 2): # 默认为两类,猫和狗
#   super().__init__() # python3
  super(AlexNet, self).__init__()
  # 开始构建AlexNet网络模型,5层卷积,3层全连接层
  # 5层卷积层
  self.conv1 = nn.Sequential(
   nn.Conv2d(in_channels=3, out_channels=96, kernel_size=11, stride=4),
   nn.ReLU(inplace=True),
   nn.MaxPool2d(kernel_size=3, stride=2),
   LRN(local_size=5, bias=1, alpha=1e-4, beta=0.75, ACROSS_CHANNELS=True)
  )
  self.conv2 = nn.Sequential(
   nn.Conv2d(in_channels=96, out_channels=256, kernel_size=5, groups=2, padding=2),
   nn.ReLU(inplace=True),
   nn.MaxPool2d(kernel_size=3, stride=2),
   LRN(local_size=5, bias=1, alpha=1e-4, beta=0.75, ACROSS_CHANNELS=True)
  )
  self.conv3 = nn.Sequential(
   nn.Conv2d(in_channels=256, out_channels=384, kernel_size=3, padding=1),
   nn.ReLU(inplace=True)
  )
  self.conv4 = nn.Sequential(
   nn.Conv2d(in_channels=384, out_channels=384, kernel_size=3, padding=1),
   nn.ReLU(inplace=True)
  )
  self.conv5 = nn.Sequential(
   nn.Conv2d(in_channels=384, out_channels=256, kernel_size=3, padding=1),
   nn.ReLU(inplace=True),
   nn.MaxPool2d(kernel_size=3, stride=2)
  )
  # 3层全连接层
  # 前向计算的时候,最开始输入需要进行view操作,将3D的tensor变为1D
  self.fc6 = nn.Sequential(
   nn.Linear(in_features=6*6*256, out_features=4096),
   nn.ReLU(inplace=True),
   nn.Dropout()
  )
  self.fc7 = nn.Sequential(
   nn.Linear(in_features=4096, out_features=4096),
   nn.ReLU(inplace=True),
   nn.Dropout()
  )
  self.fc8 = nn.Linear(in_features=4096, out_features=num_classes)

 def forward(self, x):
  x = self.conv5(self.conv4(self.conv3(self.conv2(self.conv1(x)))))
  x = x.view(-1, 6*6*256)
  x = self.fc8(self.fc7(self.fc6(x)))
  return x

补充知识:pytorch Load部分weights

我们从网上down下来的模型与我们的模型可能就存在一个层的差异,此时我们就需要重新训练所有的参数是不合理的。

因此我们可以加载相同的参数,而忽略不同的参数,代码如下:

  pretrained_dict = torch.load(“model.pth”)
  model_dict = et.state_dict()
  pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
  model_dict.update(pretrained_dict)
  net.load_state_dict(model_dict)

以上这篇pytorch中的weight-initilzation用法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • 在Pytorch中使用样本权重(sample_weight)的正确方法

    step: 1.将标签转换为one-hot形式. 2.将每一个one-hot标签中的1改为预设样本权重的值 即可在Pytorch中使用样本权重. eg: 对于单个样本:loss = - Q * log(P),如下: P = [0.1,0.2,0.4,0.3] Q = [0,0,1,0] loss = -Q * np.log(P) 增加样本权重则为loss = - Q * log(P) *sample_weight P = [0.1,0.2,0.4,0.3] Q = [0,0,sample_wei

  • 对Pytorch神经网络初始化kaiming分布详解

    函数的增益值 torch.nn.init.calculate_gain(nonlinearity, param=None) 提供了对非线性函数增益值的计算. 增益值gain是一个比例值,来调控输入数量级和输出数量级之间的关系. fan_in和fan_out pytorch计算fan_in和fan_out的源码 def _calculate_fan_in_and_fan_out(tensor): dimensions = tensor.ndimension() if dimensions < 2:

  • 基于pytorch 预训练的词向量用法详解

    如何在pytorch中使用word2vec训练好的词向量 torch.nn.Embedding() 这个方法是在pytorch中将词向量和词对应起来的一个方法. 一般情况下,如果我们直接使用下面的这种: self.embedding = torch.nn.Embedding(num_embeddings=vocab_size, embedding_dim=embeding_dim) num_embeddings=vocab_size 表示词汇量的大小 embedding_dim=embeding

  • pytorch自定义初始化权重的方法

    在常见的pytorch代码中,我们见到的初始化方式都是调用init类对每层所有参数进行初始化.但是,有时我们有些特殊需求,比如用某一层的权重取优化其它层,或者手动指定某些权重的初始值. 核心思想就是构造和该层权重同一尺寸的矩阵去对该层权重赋值.但是,值得注意的是,pytorch中各层权重的数据类型是nn.Parameter,而不是Tensor或者Variable. import torch import torch.nn as nn import torch.optim as optim imp

  • PyTorch中反卷积的用法详解

    pytorch中的 2D 卷积层 和 2D 反卷积层 函数分别如下: class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, groups=1, bias=True) class torch.nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, b

  • pytorch中nn.Conv1d的用法详解

    先粘贴一段official guide:nn.conv1d官方 我一开始被in_channels.out_channels卡住了很久,结果发现就和conv2d是一毛一样的.话不多说,先粘代码(菜鸡的自我修养) class CNN1d(nn.Module): def __init__(self): super(CNN1d,self).__init__() self.layer1 = nn.Sequential( nn.Conv1d(1,100,2), nn.BatchNorm1d(100), nn

  • PyTorch中topk函数的用法详解

    听名字就知道这个函数是用来求tensor中某个dim的前k大或者前k小的值以及对应的index. 用法 torch.topk(input, k, dim=None, largest=True, sorted=True, out=None) -> (Tensor, LongTensor) input:一个tensor数据 k:指明是得到前k个数据以及其index dim: 指定在哪个维度上排序, 默认是最后一个维度 largest:如果为True,按照大到小排序: 如果为False,按照小到大排序

  • Pytorch中膨胀卷积的用法详解

    卷积和膨胀卷积 在深度学习中,我们会碰到卷积的概念,我们知道卷积简单来理解就是累乘和累加,普通的卷积我们在此不做赘述,大家可以翻看相关书籍很好的理解. 最近在做项目过程中,碰到Pytorch中使用膨胀卷积的情况,想要的输入输出是图像经过四层膨胀卷积后图像的宽高尺寸不发生变化. 开始我的思路是padding='SAME'结合strides=1来实现输入输出尺寸不变,试列好多次还是有问题,报了张量错误的提示,想了好久也没找到解决方法,上网搜了下,有些人的博客说经过膨胀卷积之后图像的尺寸不发生变化,有

  • PyTorch中permute的基本用法示例

    目录 permute(dims) 附:permute(多维数组,[维数的组合]) 总结 permute(dims) 将tensor的维度换位. 参数:参数是一系列的整数,代表原来张量的维度.比如三维就有0,1,2这些dimension. 例: import torch import numpy    as np a=np.array([[[1,2,3],[4,5,6]]]) unpermuted=torch.tensor(a) print(unpermuted.size())  #  -->  

  • pytorch中常用的损失函数用法说明

    1. pytorch中常用的损失函数列举 pytorch中的nn模块提供了很多可以直接使用的loss函数, 比如MSELoss(), CrossEntropyLoss(), NLLLoss() 等 官方链接: https://pytorch.org/docs/stable/_modules/torch/nn/modules/loss.html pytorch中常用的损失函数 损失函数 名称 适用场景 torch.nn.MSELoss() 均方误差损失 回归 torch.nn.L1Loss() 平

  • PyTorch中torch.manual_seed()的用法实例详解

    目录 一.torch.manual_seed(seed) 介绍 torch.manual_seed(seed) 功能描述 语法 参数 返回 二.类似函数的功能 三.实例 实例 1 :不设随机种子,生成随机数 实例 2 :设置随机种子,使得每次运行代码生成的随机数都一样 实例 3 :不同的随机种子生成不同的值 总结 一.torch.manual_seed(seed) 介绍 torch.manual_seed(seed) 功能描述 设置 CPU 生成随机数的 种子 ,方便下次复现实验结果. 为 CP

  • pytorch中的numel函数用法说明

    获取tensor中一共包含多少个元素 import torch x = torch.randn(3,3) print("number elements of x is ",x.numel()) y = torch.randn(3,10,5) print("number elements of y is ",y.numel()) 输出: number elements of x is 9 number elements of y is 150 27和150分别位x和y

  • pytorch中with torch.no_grad():的用法实例

    目录 1.关于with 2.关于withtorch.no_grad(): 附:pytorch使用模型测试使用withtorch.no_grad(): 总结 1.关于with with是python中上下文管理器,简单理解,当要进行固定的进入,返回操作时,可以将对应需要的操作,放在with所需要的语句中.比如文件的写入(需要打开关闭文件)等. 以下为一个文件写入使用with的例子. with open (filename,'w') as sh: sh.write("#!/bin/bash\n&qu

  • pytorch中的weight-initilzation用法

    pytorch中的权值初始化 官方论坛对weight-initilzation的讨论 torch.nn.Module.apply(fn) torch.nn.Module.apply(fn) # 递归的调用weights_init函数,遍历nn.Module的submodule作为参数 # 常用来对模型的参数进行初始化 # fn是对参数进行初始化的函数的句柄,fn以nn.Module或者自己定义的nn.Module的子类作为参数 # fn (Module -> None) – function t

随机推荐