python 基于Apscheduler实现定时任务

导语

在工作场景遇到了这么一个场景,就是需要定期去执行一个缓存接口,用于同步设备配置。首先想到的就是Linux上的crontab,可以定期,或者间隔一段时间去执行任务。但是如果你想要把这个定时任务作为一个模块集成到Python项目中,或者想持久化任务,显然crontab不太适用。Python的APScheduler模块能够很好的解决此类问题,所以专门写这篇文章,从简单入门开始记录关于APScheduler最基础的使用场景,以及解决持久化任务的问题,最后结合其他框架深层次定制定时任务模块这几个点入手。

简单介绍

先简单介绍一下Apscheduler模块包含的四种组件:

  • Trigger触发器
  • Job作业
  • Excutor执行器
  • Scheduler调度器

大概了解了Apscheduler包含的几种概念,现在先来看一下一个简单的示例:

# -*- coding: utf-8 -*-

from apscheduler.schedulers.blocking import BlockingScheduler
import time

def hello():
  print(time.strftime("%c"))

if __name__ == "__main__":
  scheduler = BlockingScheduler()
  scheduler.add_job(hello, 'interval', seconds=5)
  scheduler.start()

示例的输出:

Thu Dec 3 16:01:20 2020
Thu Dec 3 16:01:25 2020
Thu Dec 3 16:01:30 2020
Thu Dec 3 16:01:35 2020
Thu Dec 3 16:01:40 2020
..........

这个简单的示例,我们用上面提到几种组件分析一下运行逻辑:

  • 首先是Scheduler调度器,这个示例使用的BlockingScheduler调度器,在官方文档中的解释是,BlockingScheduler适合当你的这个定时任务程序是唯一运行的程序;换言之,则是BlockingScheduler调度器是一个阻塞调度器,当程序运行这种调度器,进程则会阻塞,无法执行其他操作;
  • 其次是Job作业和触发器,这两个放在一起讲是因为,在定义作业的时候,你就需要选择一个触发器,这里选择的是interval触发器,这种触发器会以固定时间间隔运行作业。换言之,为调度器添加一个hello的工作,并以每5秒的时间间隔执行任务。
  • 最后就是执行器,默认是ThreadPoolExcutor执行器,他们将任务中可调用对象交给线程池执行操作,等完成操作后,执行器会通知调度程序。

内置的三种Trigger触发器类型:

  • date:特定时间仅运行一次作业
  • interval: 固定的时间间隔内运行一次作业
  • cron: 在一天内特定的时间定期运行作业

常见的Scheduler调度器:

  • BlockingScheduler: 调度程序是流程中唯一运行的东西
  • BackgroundScheduler: 调度程序在应用程序内部的后台运行时使用
  • AsyncIOScheduler: 应用程序使用asyncio模块
  • GeventScheduler: 应用程序使用gevent模块
  • TornadoScheduler:构建Tornado应用程序时使用
  • TwistedScheduler: 构建Tornado应用程序时使用
  • QtScheduler: 在构建QT应用程序时使用

常见的JobStore:

  • MemoryJobStore
  • MongoDBJobStore
  • SQLAlchemyJobStore
  • RedisJobStore

进阶使用

通过上面一个简单的示例了解大概的工作流程,以及各个组件在整个流程中的作用,以下的示例是Flask Web框架结合使用Apscheduler定时器,定时执行任务。

# -*- coding: utf-8 -*-

from flask import Flask, Blueprint, request
from apscheduler.executors.pool import ThreadPoolExecutor
from apscheduler.schedulers.background import BackgroundScheduler
from apscheduler.jobstores.redis import RedisJobStore
import time

app = Flask(__name__)
executors = {"default": ThreadPoolExecutor(5)}
default_redis_jobstore = RedisJobStore(db=2,
    jobs_key="apschedulers.default_jobs",
    run_times_key="apschedulers.default_run_times",
    host = '127.0.0.1',
    port = 6379
    )

scheduler = BackgroundScheduler(executors=executors)
scheduler.add_jobstore(default_redis_jobstore)
scheduler.start()

def say_hello():
  print(time.strftime("%c"))

@app.route("/get_job", methods=['GET'])
def get_job():
  if scheduler.get_job("say_hello_test"):
    return "YES"
  else:
    return "NO"

@app.route("/start_job", methods=["GET"])
def start_job():
  if not scheduler.get_job("say_hello_test"):
    scheduler.add_job(say_hello, "interval", seconds=5, id="say_hello_test")
    return "Start Scuessfully!"
  else:
    return "Started Failed"

@app.route("/remove_job", methods=["GET"])
def remove_job():
  if scheduler.get_job("say_hello_test"):
    scheduler.remove_job("say_hello_test")
    return "Delete Successfully!"
  else:
    return "Delete Failed"

if __name__ == "__main__":
  app.run(host="127.0.0.1", port=8787, debug=True)
  • 先分析Jobstore,这里使用的是RedisJobstore,将任务序列化存入到Redis数据库中。这里顺便提一下,为什么需要设置作业存储器,原因是当调度器程序崩溃时,仍然能够保留作业,当然选择什么作业存储器,可以根据具体的工作场景,目前主流的mysql,mongodb,redis,SQLite基本都支持;
  • 然后再看看Scheduler,这里使用的时BackgroundScheduler,因为这里要求调度程序不能阻塞flask程序的正常接收请求,所以选在BackgrounScheduler让它在开始执行任务时是在后台运行的,不会阻塞主线程;
  • 最后看看工作的逻辑,这里get_job获取作业的状态,查看作业是否存在,start_job则是先判断作业是否启动,然后再决定启动操作,remove_job则是停止作业。而这里的作业定义则是通过interval触发器,每五秒执行一次say_hello任务;

总结

最后总结一下,首先你要设置一个作业存储器用于在调度程序崩溃重新恢复时,还能够在作业存储器中获取到作业继续执行;然后你需要设置一个执行器,这个根据作业的类型,比如时一个CPU密集型的任务,那就可以用进程池执行器,默认是用线程池执行器;最后创建配置调度器,启动调度,可以在启动前添加作业,也可以在启动后添加,删除,获取作业。(在这里需要明白的一点就是应用程序不会直接去操作作业存储器,作业或者执行器,而是调度器提供适当的接口来处理这些接口。)

ApScheduler是一个不错的定时任务库,能够动态的添加删除,同时也支持不同的触发器类型,这也是它的优势,相反一些如果是静态任务,其实可以用如linux的crontab工具去做定时任务。有关这方面的记录还会持续更新,如果有什么问题,可以提出来,大家一起探讨。

以上就是python Apscheduler的使用方法的详细内容,更多关于python Apscheduler的资料请关注我们其它相关文章!

(0)

相关推荐

  • Python任务调度利器之APScheduler详解

    任务调度应用场景 所谓的任务调度是指安排任务的执行计划,即何时执行,怎么执行等.在现实项目中经常出现它们的身影:特别是数据类项目,比如实时统计每5分钟网站的访问量,就需要每5分钟定时从日志数据分析访问量. 总结下任务调度应用场景: 离线作业调度:按时间粒度执行某项任务 共享缓存更新:定时刷新缓存,如redis缓存:不同进程间的共享数据 任务调度工具 linux的crontab, 支持按照分钟/小时/天/月/周粒度,执行任务 java的Quartz windows的任务计划 本文介绍的是pytho

  • Python任务调度模块APScheduler使用

    APScheduler是一个Python定时任务框架,使用起来十分方便.提供了基于日期.固定时间间隔以及crontab类型的任务,并且可以持久化任务.并以daemon方式运行应用. 在APScheduler中有四个组件: 触发器(trigger)包含调度逻辑,每一个作业有它自己的触发器,用于决定接下来哪一个作业会运行.除了他们自己初始配置意外,触发器完全是无状态的.简单说就是应该说明一个任务应该在什么时候执行. 作业存储(job store)存储被调度的作业,默认的作业存储是简单地把作业保存在内

  • Python定时任务APScheduler的实例实例详解

    APScheduler 支持三种调度任务:固定时间间隔,固定时间点(日期),Linux 下的 Crontab 命令.同时,它还支持异步执行.后台执行调度任务. 一.基本架构 触发器 triggers:设定触发任务的条件 描述一个任务何时被触发,按日期或按时间间隔或按 cronjob 表达式三种方式触发 任务存储器 job stores:存放任务,可以放内存(默认)或数据库 注:调度器之间不能共享任务存储器 执行器 executors:用于执行任务,可设定执行模式 将指定的作业提交到线程池或者进程

  • 详解Python下Flask-ApScheduler快速指南

    引言:Flask是Python社区非常流行的一个Web开发框架,本文将尝试将介绍APScheduler应用于Flask之中. 1. Flask介绍 Flask是Python社区大名鼎鼎的"microframework",基于简单的核心,使用extension来增加其他功能,其提供非常丰富易用的扩展包, 比如: 2.  Flask-APScheduler 社区提供了一个Flask-APScheduler的模块,方便大家直接在Flask模块中使用APScheduler. 关于安装的命令,仍

  • Python定时任务APScheduler原理及实例解析

    定时任务: 1. 线程睡眠函数 sleep() --粗暴!一直占有 CPU 资源,导致后续操作无法执行 2. threading.Timer(10, task, ()).start() # (间隔s,任务task, 函参) 3. import sched # 初始化 sched 模块的 scheduler 类 scheduler = sched.scheduler(time.time, time.sleep) # 增加调度任务 enter(delay, priority, action, arg

  • python编写网页爬虫脚本并实现APScheduler调度

    前段时间自学了python,作为新手就想着自己写个东西能练习一下,了解到python编写爬虫脚本非常方便,且最近又学习了MongoDB相关的知识,万事具备只欠东风. 程序的需求是这样的,爬虫爬的页面是京东的电子书网站页面,每天会更新一些免费的电子书,爬虫会把每天更新的免费的书名以第一时间通过邮件发给我,通知我去下载. 一.编写思路: 1.爬虫脚本获取当日免费书籍信息 2.把获取到的书籍信息与数据库中的已有信息作比较,如果书籍存在不做任何操作,书籍不存在,执行插入数据库的操作,把数据的信息存入Mo

  • Python使用APScheduler实现定时任务过程解析

    前言 APScheduler是基于Quartz的一个Python定时任务框架.提供了基于日期.固定时间间隔以及crontab类型的任务,并且可以持久化任务. 在线文档:https://apscheduler.readthedocs.io/en/latest/userguide.html 一.安装APScheduler pip install apscheduler 二.基本概念 APScheduler有四大组件: 1.触发器 triggers : 触发器包含调度逻辑.每个作业都有自己的触发器,用

  • Python APScheduler执行使用方法详解

    APScheduler就是定时进行周期性的运行某些程序,在语言程序编写中,一直会遇到些定时服务,有时是根据时间定时,有时在固定的位置上进行定制,还有一些是因为储蓄出现的定时,不管是处于哪一种定时类型,基本上都可以使用APScheduler模块进行协助工作,本文给大家介绍定时模块的使用方法. APScheduler与第三方模块安装方式一样,使用pip,安装过程如下: 常见的使用方式 1.APScheduler支持触发器: DateTrigger IntervalTrigger CronTrigge

  • Python定时任务框架APScheduler原理及常用代码

    APScheduler简介 在平常的工作中几乎有一半的功能模块都需要定时任务来推动,例如项目中有一个定时统计程序,定时爬出网站的URL程序,定时检测钓鱼网站的程序等等,都涉及到了关于定时任务的问题,第一时间想到的是利用time模块的time.sleep()方法使程序休眠来达到定时任务的目的,虽然这样也可以,但是总觉得不是那么的专业,^_^所以就找到了python的定时任务模块APScheduler: APScheduler基于Quartz的一个Python定时任务框架,实现了Quartz的所有功

  • Python定时任务APScheduler安装及使用解析

    1.简介 APScheduler是一个 Python 定时任务框架,使用起来十分方便.提供了基于日期.固定时间间隔以及 crontab 类型的任务,并且可以持久化任务.并以 daemon 方式运行应用. 2.APScheduler四个组件 APScheduler 四个组件分别为:触发器(trigger),作业存储(job store),执行器(executor),调度器(scheduler). 触发器(trigger) 包含调度逻辑,每一个作业有它自己的触发器,用于决定接下来哪一个作业会运行.除

  • Python中定时任务框架APScheduler的快速入门指南

    前言 大家应该都知道在编程语言中,定时任务是常用的一种调度形式,在Python中也涌现了非常多的调度模块,本文将简要介绍APScheduler的基本使用方法. 一.APScheduler介绍 APScheduler是基于Quartz的一个python定时任务框架,实现了Quartz的所有功能,使用起来十分方便.提供了基于日期.固定时间间隔以及crontab类型的任务,并且可以持久化任务. APScheduler提供了多种不同的调度器,方便开发者根据自己的实际需要进行使用:同时也提供了不同的存储机

随机推荐