详解基于redis实现的四种常见的限流策略

目录
  • 一、引言
  • 二、固定时间窗口算法
  • 三、滑动时间窗口算法
  • 四、漏桶算法
  • 五、令牌桶算法

一、引言

  • 在web开发中功能是基石,除了功能以外运维和防护就是重头菜了。因为在网站运行期间可能会因为突然的访问量导致业务异常、也有可能遭受别人恶意攻击
  • 所以我们的接口需要对流量进行限制。俗称的QPS也是对流量的一种描述
  • 针对限流现在大多应该是令牌桶算法,因为它能保证更多的吞吐量。除了令牌桶算法还有他的前身漏桶算法和简单的计数算法
  • 下面我们来看看这四种算法

二、固定时间窗口算法

  • 固定时间窗口算法也可以叫做简单计数算法。网上有很多都将计数算法单独抽离出来。但是笔者认为计数算法是一种思想,而固定时间窗口算法是他的一种实现
  • 包括下面滑动时间窗口算法也是计数算法的一种实现。因为计数如果不和时间进行绑定的话那么失去了限流的本质了。就变成了拒绝了

优点:

  • 在固定的时间内出现流量溢出可以立即做出限流。每个时间窗口不会相互影响
  • 在时间单元内保障系统的稳定。保障的时间单元内系统的吞吐量上限

缺点:

  • 正如图示一样,他的最大问题就是临界状态。在临界状态最坏情况会受到两倍流量请求
  • 除了临界的情况,还有一种是在一个单元时间窗内前期如果很快的消耗完请求阈值。那么剩下的时间将会无法请求。这样就会因为一瞬间的流量导致一段时间内系统不可用。这在互联网高可用的系统中是不能接受的。

实现:

  • 好了,关于原理介绍及优缺点我们已经了解了。下面我们动手实现它
  • 首先我们在实现这种计数时,采用redis是非常好的选择。这里我们通过redis实现

controller

@RequestMapping(value = "/start",method = RequestMethod.GET)
public Map<string,object> start(@RequestParam Map<string, object=""> paramMap) {
    return testService.startQps(paramMap);
}

service

@Override
public Map<string, object=""> startQps(Map<string, object=""> paramMap) {
    //根据前端传递的qps上线
    Integer times = 100;
    if (paramMap.containsKey("times")) {
        times = Integer.valueOf(paramMap.get("times").toString());
    }
    String redisKey = "redisQps";
    RedisAtomicInteger redisAtomicInteger = new RedisAtomicInteger(redisKey, redisTemplate.getConnectionFactory());
    int no = redisAtomicInteger.getAndIncrement();
    //设置时间固定时间窗口长度 1S
    if (no == 0) {
        redisAtomicInteger.expire(1, TimeUnit.SECONDS);
    }
    //判断是否超限  time=2 表示qps=3
    if (no > times) {
        throw new RuntimeException("qps refuse request");
    }
    //返回成功告知
    Map<string, object=""> map = new HashMap<>();
    map.put("success", "success");
    return map;
}

结果测试:

我们设置的qps=3 , 我们可以看到五个并发进来后前三个正常访问,后面两个就失败了。稍等一段时间我们在并发访问,前三个又可以正常访问。说明到了下一个时间窗口

三、滑动时间窗口算法

  • 针对固定时间窗口的缺点--临界值出现双倍流量问题。 我们的滑动时间窗口就产生了。
  • 其实很好理解,就是针对固定时间窗口,将时间窗口统计从原来的固定间隔变成更加细度化的单元了。
  • 在上面我们固定时间窗口演示中我们设置的时间单元是1S 。 针对1S我们将1S拆成时间戳。
  • 固定时间窗口是统计单元随着时间的推移不断向后进行。而滑动时间窗口是我们认为的想象出一个时间单元按照相对论的思想将时间固定,我们的抽象时间单元自己移动。抽象的时间单元比实际的时间单元更小。
  • 读者可以看下下面的动图,就可以理解了。

优点:

  • 实质上就是固定时间窗口算法的改进。所以固定时间窗口的缺点就是他的优点。
  • 内部抽象一个滑动的时间窗,将时间更加小化。存在边界的问题更加小。客户感知更弱了。

缺点:

  • 不管是固定时间窗口算法还是滑动时间窗口算法,他们都是基于计数器算法进行优化,但是他们对待限流的策略太粗暴了。
  • 为什么说粗暴呢,未限流他们正常放行。一旦达到限流后就会直接拒绝。这样我们会损失一部分请求。这对于一个产品来说不太友好

实现:

  • 滑动时间窗口是将时间更加细化,上面我们是通过redis#setnx实现的。这里我们就无法通过他统一记录了。我们应该加上更小的时间单元存储到一个集合汇总。然后根据集合的总量计算限流。redis的zsett数据结构就和符合我们的需求。
  • 为什么选择zset呢,因为redis的zset中除了值以外还有一个权重。会根据这个权重进行排序。如果我们将我们的时间单元及时间戳作为我们的权重,那么我们获取统计的时候只需要按照一个时间戳范围就可以了。
  • 因为zset内元素是唯一的,所以我们的值采用uuid或者雪花算法一类的id生成器

controller

@RequestMapping(value = "/startList",method = RequestMethod.GET)
public Map<string,object> startList(@RequestParam Map<string, object=""> paramMap) {
    return testService.startList(paramMap);
}

service

String redisKey = "qpsZset";
Integer times = 100;
if (paramMap.containsKey("times")) {
    times = Integer.valueOf(paramMap.get("times").toString());
}
long currentTimeMillis = System.currentTimeMillis();
long interMills = inter * 1000L;
Long count = redisTemplate.opsForZSet().count(redisKey, currentTimeMillis - interMills, currentTimeMillis);
if (count > times) {
    throw new RuntimeException("qps refuse request");
}
redisTemplate.opsForZSet().add(redisKey, UUID.randomUUID().toString(), currentTimeMillis);
Map<string, object=""> map = new HashMap<>();
map.put("success", "success");
return map;

结果测试:

  • 和固定时间窗口采用相同的并发。为什么上面也会出现临界状况呢。因为在代码里时间单元间隔比固定时间间隔采用还要大 。 上面演示固定时间窗口时间单元是1S出现了最坏情况。而滑动时间窗口设计上就应该间隔更短。而我设置成10S 也没有出现坏的情况
  • 这里就说明滑动比固定的优处了。如果我们调更小应该更加不会出现临界问题,不过说到底他还是避免不了临界出现的问题

四、漏桶算法

  • 滑动时间窗口虽然可以极大程度的规避临界值问题,但是始终还是避免不了
  • 另外时间算法还有个致命的问题,他无法面对突如其来的大量流量,因为他在达到限流后直接就拒绝了其他额外流量
  • 针对这个问题我们继续优化我们的限流算法。 漏桶算法应运而生

优点:

  • 面对限流更加的柔性,不在粗暴的拒绝。
  • 增加了接口的接收性
  • 保证下流服务接收的稳定性。均匀下发

缺点:

  • 我觉得没有缺点。非要鸡蛋里挑骨头那我只能说漏桶容量是个短板

实现:

controller

@RequestMapping(value = "/startLoutong",method = RequestMethod.GET)
public Map<string,object> startLoutong(@RequestParam Map<string, object=""> paramMap) {
    return testService.startLoutong(paramMap);
}

service在service中我们通过redis的list的功能模拟出桶的效果。这里代码是实验室性质的。在真实使用中我们还需要考虑并发的问题

@Override
public Map<string, object=""> startLoutong(Map<string, object=""> paramMap) {
    String redisKey = "qpsList";
    Integer times = 100;
    if (paramMap.containsKey("times")) {
        times = Integer.valueOf(paramMap.get("times").toString());
    }
    Long size = redisTemplate.opsForList().size(redisKey);
    if (size >= times) {
        throw new RuntimeException("qps refuse request");
    }
    Long aLong = redisTemplate.opsForList().rightPush(redisKey, paramMap);
    if (aLong > times) {
        //为了防止并发场景。这里添加完成之后也要验证。  即使这样本段代码在高并发也有问题。此处演示作用
        redisTemplate.opsForList().trim(redisKey, 0, times-1);
        throw new RuntimeException("qps refuse request");
    }
    Map<string, object=""> map = new HashMap<>();
    map.put("success", "success");
    return map;
}

下游消费

@Component
public class SchedulerTask {

    @Autowired
    RedisTemplate redisTemplate;

    private String redisKey="qpsList";

    @Scheduled(cron="*/1 * * * * ?")
    private void process(){
        //一次性消费两个
        System.out.println("正在消费。。。。。。");
        redisTemplate.opsForList().trim(redisKey, 2, -1);
    }

}

测试:

  • 我们还是通过50并发循环10次访问。我们可以发现只有在一开始能达到比较高的吞吐量。在随后桶的容量满了之后。而下游水滴速率比上游请求速率慢的情况下。只能以下游恒定的速度接收访问。
  • 他的问题也暴露的很明显。针对时间窗口的不足漏桶进行的不足,但是仍是不足。无法彻底避免请求溢出的问题。
  • 请求溢出本身就是一种灾难性的问题。所有的算法目前都没有解决这个问题。只是在减缓他带来的问题

五、令牌桶算法

  • 令牌桶和漏桶法是一样的。只不过将桶的作用方向改变了一下。
  • 漏桶的出水速度是恒定的,如果流量突然增加的话我们就只能拒绝入池
  • 但是令牌桶是将令牌放入桶中,我们知道正常情况下令牌就是一串字符当桶满了就拒绝令牌的入池,但是面对高流量的时候正常加上我们的超时时间就留下足够长的时间生产及消费令牌了。这样就尽可能的不会造成请求的拒绝
  • 最后,不论是对于令牌桶拿不到令牌被拒绝,还是漏桶的水满了溢出,都是为了保证大部分流量的正常使用,而牺牲掉了少部分流量
public Map<string, object=""> startLingpaitong(Map<string, object=""> paramMap) {
    String redisKey = "lingpaitong";
    String token = redisTemplate.opsForList().leftPop(redisKey).toString();
    //正常情况需要验证是否合法,防止篡改
    if (StringUtils.isEmpty(token)) {
        throw new RuntimeException("令牌桶拒绝");
    }
    Map<string, object=""> map = new HashMap<>();
    map.put("success", "success");
    return map;
}
@Scheduled(cron="*/1 * * * * ?")
private void process(){
    //一次性生产两个
    System.out.println("正在消费。。。。。。");
    for (int i = 0; i < 2; i++) {
        redisTemplate.opsForList().rightPush(redisKey, i);
    }
}

以上就是详解基于redis实现的四种常见的限流策略的详细内容,更多关于redis限流策略的资料请关注我们其它相关文章!

(0)

相关推荐

  • Python+redis通过限流保护高并发系统

    保护高并发系统的三大利器:缓存.降级和限流.那什么是限流呢?用我没读过太多书的话来讲,限流就是限制流量.我们都知道服务器的处理能力是有上限的,如果超过了上限继续放任请求进来的话,可能会发生不可控的后果.而通过限流,在请求数量超出阈值的时候就排队等待甚至拒绝服务,就可以使系统在扛不住过高并发的情况下做到有损服务而不是不服务. 举个例子,如各地都出现口罩紧缺的情况,广州政府为了缓解市民买不到口罩的状况,上线了预约服务,只有预约到的市民才能到指定的药店购买少量口罩.这就是生活中限流的情况,说这个也是希

  • springboot+redis 实现分布式限流令牌桶的示例代码

    1.前言 网上找了很多redis分布式限流方案,要不就是太大,需要引入第三方jar,而且还无法正常运行,要不就是定时任务定时往key中放入数据,使用的时候调用,严重影响性能,所以着手自定义实现redis令牌桶. 只用到了spring-boot-starter-data-redis包,并且就几行代码. 2.环境准备 a.idea新建springboot项目,引入spring-data-redis包 b.编写令牌桶实现方法RedisLimitExcutor c.测试功能,创建全局拦截器,测试功能 3

  • redis实现的四种常见限流策略

    目录 引言 固定时间窗口算法 实现 滑动时间窗口算法 实现 漏桶算法 实现 令牌桶算法 引言 在web开发中功能是基石,除了功能以外运维和防护就是重头菜了.因为在网站运行期间可能会因为突然的访问量导致业务异常.也有可能遭受别人恶意攻击 所以我们的接口需要对流量进行限制.俗称的QPS也是对流量的一种描述 针对限流现在大多应该是令牌桶算法,因为它能保证更多的吞吐量.除了令牌桶算法还有他的前身漏桶算法和简单的计数算法 下面我们来看看这四种算法 固定时间窗口算法 固定时间窗口算法也可以叫做简单计数算法.

  • 基于Redis实现分布式应用限流的方法

    限流的目的是通过对并发访问/请求进行限速或者一个时间窗口内的的请求进行限速来保护系统,一旦达到限制速率则可以拒绝服务. 前几天在DD的公众号,看了一篇关于使用 瓜娃 实现单应用限流的方案 -->原文,参考<redis in action> 实现了一个jedis版本的,都属于业务层次限制. 实际场景中常用的限流策略: Nginx接入层限流 按照一定的规则如帐号.IP.系统调用逻辑等在Nginx层面做限流 业务应用系统限流 通过业务代码控制流量这个流量可以被称为信号量,可以理解成是一种锁,它

  • 基于Redis的限流器的实现(示例讲解)

    1 概述 系统中的接口通常都有限流,比如 70次/秒 ,如何保证我们的接口的调用次数在超过第三方接口限流的时候快速失败呢?这时候就需要限流器了.下面是笔者用redis实现限流器的流程图. 2 代码 /** * 获取限流权限 * @param key * @param millisecond 毫秒数 * @param limitCount 限流次数 * @return */ public static boolean getCurrentLimiting(String key, Long mill

  • 详解Redis实现限流的三种方式

    面对越来越多的高并发场景,限流显示的尤为重要. 当然,限流有许多种实现的方式,Redis具有很强大的功能,我用Redis实践了三种的实现方式,可以较为简单的实现其方式.Redis不仅仅是可以做限流,还可以做数据统计,附近的人等功能,这些可能会后续写到. 第一种:基于Redis的setnx的操作 我们在使用Redis的分布式锁的时候,大家都知道是依靠了setnx的指令,在CAS(Compare and swap)的操作的时候,同时给指定的key设置了过期实践(expire),我们在限流的主要目的就

  • Springboot使用redis进行api防刷限流过程详解

    这篇文章主要介绍了Springboot使用redis进行api防刷限流过程详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 api限流的场景 限流的需求出现在许多常见的场景中 秒杀活动,有人使用软件恶意刷单抢货,需要限流防止机器参与活动 某api被各式各样系统广泛调用,严重消耗网络.内存等资源,需要合理限流 淘宝获取ip所在城市接口.微信公众号识别微信用户等开发接口,免费提供给用户时需要限流,更具有实时性和准确性的接口需要付费. api限流实

  • Redis和Lua实现分布式限流器的方法详解

    主要是依靠 redis + lua 来实现限流器, 使用 lua 的原因是将多条命令合并在一起作为一个原子操作, 无需过多考虑并发. 计数器模式 原理 计数器算法是指在一段窗口时间内允许通过的固定数量的请求, 比如10次/秒, 500次/30秒. 如果设置的时间粒度越细, 那么限流会更平滑. 实现 所使用的 Lua 脚本 -- 计数器限流 -- 此处支持的最小单位时间是秒, 若将 expire 改成 pexpire 则可支持毫秒粒度. -- KEYS[1] string 限流的key -- AR

  • php使用lua+redis实现限流,计数器模式,令牌桶模式

    lua 优点 减少网络开销: 不使用 Lua 的代码需要向 Redis 发送多次请求, 而脚本只需一次即可, 减少网络传输; 原子操作: Redis 将整个脚本作为一个原子执行, 无需担心并发, 也就无需事务; 复用: 脚本会永久保存 Redis 中, 其他客户端可继续使用. 计数器模式: 利用lua脚本一次性完成处理达到原子性,通过INCR自增计数,判断是否达到限定值,达到限定值则返回限流,添加key过期时间应该范围过度 $lua = ' local i = redis.call("INCR&

  • 详解基于redis实现的四种常见的限流策略

    目录 一.引言 二.固定时间窗口算法 三.滑动时间窗口算法 四.漏桶算法 五.令牌桶算法 一.引言 在web开发中功能是基石,除了功能以外运维和防护就是重头菜了.因为在网站运行期间可能会因为突然的访问量导致业务异常.也有可能遭受别人恶意攻击 所以我们的接口需要对流量进行限制.俗称的QPS也是对流量的一种描述 针对限流现在大多应该是令牌桶算法,因为它能保证更多的吞吐量.除了令牌桶算法还有他的前身漏桶算法和简单的计数算法 下面我们来看看这四种算法 二.固定时间窗口算法 固定时间窗口算法也可以叫做简单

  • 详解Spring Security 中的四种权限控制方式

    Spring Security 中对于权限控制默认已经提供了很多了,但是,一个优秀的框架必须具备良好的扩展性,恰好,Spring Security 的扩展性就非常棒,我们既可以使用 Spring Security 提供的方式做授权,也可以自定义授权逻辑.一句话,你想怎么玩都可以! 今天松哥来和大家介绍一下 Spring Security 中四种常见的权限控制方式. 表达式控制 URL 路径权限 表达式控制方法权限 使用过滤注解 动态权限 四种方式,我们分别来看.  1.表达式控制 URL 路径权

  • 详解基于redis实现分布式锁

    前言 为了保证一个在高并发存场景下只能被同一个线程操作,java并发处理提供ReentrantLock或Synchronized进行互斥控制.但是这仅仅对单机环境有效.我们实现分布式锁大概通过三种方式. redis实现分布式锁 数据库实现分布式锁 zk实现分布式锁 原理剖析 上述三种分布式锁都是通过各自为依据对各个请求进行上锁,解锁从而控制放行还是拒绝.redis锁是基于其提供的setnx命令. setnx当且仅当key不存在.若给定key已经存在,则setnx不做任何动作.setnx是一个原子

  • 详解vue 路由跳转四种方式 (带参数)

    1.  router-link 1. 不带参数 <router-link :to="{name:'home'}"> <router-link :to="{path:'/home'}"> //name,path都行, 建议用name // 注意:router-link中链接如果是'/'开始就是从根路由开始,如果开始不带'/',则从当前路由开始. 2.带参数 <router-link :to="{name:'home', para

  • 详解Java停止线程的四种方法

    一.线程停止基础知识 interrupted(): 测试当前线程是否已经中断.该方法为静态方法,调用后会返回boolean值.不过调用之后会改变线程的状态,如果是中断状态调用的,调用之后会清除线程的中断状态. isInterrupted(): 测试线程是否已经中断.该方法由对象调用 interrupt(): 标记线程为中断状态,不过不会中断正在运行的线程. stop(): 暴力停止线程.已弃用. 二.停止线程方法1:异常法停止 线程调用interrupt()方法后,在线程的run方法中判断当前对

  • 详解基于深度学习的两种信源信道联合编码

    概述 经典端对端无线通信系统如下图所示: 信源 xx使用信源编码,去除冗余得到比特流 ss. 对 ss进行信道编码(如 Turbo.LDPC 等)得到 yy,增加相应的校验位来抵抗信道噪声. 对比特流 yy进行调制(如 BPSK.16QAM 等)得到 zz,并经物理信道发送. 接收端对经信道后的符号 \bar{z}zˉ 进行解调.解码操作得到 \bar{x}xˉ. 根据定义信道方式不同,基于深度学习的信源信道联合编码(Deep JSCC)可以分为两类. 第一类,受无编码传输的启发,将信源编码.信

  • 详解C++中常用的四种类型转换方式

    目录 1.静态类型转换:static_cast(exp) 2.动态类型转换:dynamic_cast(exp) 3.常类型转换:const_case(exp) 4. 解释类型转换: reinterpret_cast(exp) 1.静态类型转换:static_cast(exp) 1.1静态类型转换主要用于两种转换环境 1.1.1 C++内置类型的转换:与C风格强转类似. 与c相同的地方: #include <iostream> using namespace std; int main() {

  • 详解Java创建线程的五种常见方式

    目录 Java中如何创建线程呢? 1.显示继承Thread,重写run来指定现成的执行代码. 2.匿名内部类继承Thread,重写run来执行线程执行的代码. 3.显示实现Runnable接口,重写run方法. 4.匿名内部类实现Runnable接口,重写run方法 5.通过lambda表达式来描述线程执行的代码 [面试题]:Thread的run和start之间的区别? Thread类的具体用法 Thread类常见的一些属性 中断一个线程 1.方法一:让线程run完 2.方法二:调用interr

  • 详解MySQL双活同步复制四种解决方案

    对于数据实时同步,其核心是需要基于日志来实现,是可以实现准实时的数据同步,基于日志实现不会要求数据库本身在设计和实现中带来任何额外的约束. 基于MySQL原生复制主主同步方案  这是常见的方案,一般来说,中小型规模的时候,采用这种架构是最省事的. 两个节点可以采用简单的双主模式,并且使用专线连接,在master_A节点发生故障后,应用连接快速切换到master_B节点,反之也亦然.有几个需要注意的地方,脑裂的情况,两个节点写入相同数据而引发冲突,同时把两个节点的auto_increment_in

随机推荐