Python如何使用opencv进行手势识别详解

目录
  • 前言
  • 原理
  • 程序部分
  • 附另一个手势识别实例
  • 总结

前言

本项目是使用了谷歌开源的框架mediapipe,里面有非常多的模型提供给我们使用,例如面部检测,身体检测,手部检测等。

原理

首先先进行手部的检测,找到之后会做Hand Landmarks。

将手掌的21个点找到,然后我们就可以通过手掌的21个点的坐标推测出来手势,或者在干什么。

程序部分

第一安装Opencv

pip install opencv-python

第二安装mediapipe

pip install mediapipe

程序

先调用这俩个函数库

import cv2
import mediapipe as mp

然后再调用摄像头

cap = cv2.VideoCapture(0)

函数主体部分

while True:
    ret, img = cap.read()#读取当前数据
    if ret:
        cv2.imshow('img',img)#显示当前读取到的画面
    if cv2.waitKey(1) == ord('q'):#按q键退出程序
        break

全部函数

import cv2
import mediapipe as mp
import time

cap = cv2.VideoCapture(1)
mpHands = mp.solutions.hands
hands = mpHands.Hands()
mpDraw = mp.solutions.drawing_utils
handLmsStyle = mpDraw.DrawingSpec(color=(0, 0, 255), thickness=3)
handConStyle = mpDraw.DrawingSpec(color=(0, 255, 0), thickness=5)
pTime = 0
cTime = 0

while True:
    ret, img = cap.read()
    if ret:
        imgRGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        result = hands.process(imgRGB)

        # print(result.multi_hand_landmarks)
        imgHeight = img.shape[0]
        imgWidth = img.shape[1]

        if result.multi_hand_landmarks:
            for handLms in result.multi_hand_landmarks:
                mpDraw.draw_landmarks(img, handLms, mpHands.HAND_CONNECTIONS, handLmsStyle, handConStyle)
                for i, lm in enumerate(handLms.landmark):
                    xPos = int(lm.x * imgWidth)
                    yPos = int(lm.y * imgHeight)

                    # cv2.putText(img, str(i), (xPos-25, yPos+5), cv2.FONT_HERSHEY_SIMPLEX, 0.4, (0, 0, 255), 2)

                    # if i == 4:
                    #     cv2.circle(img, (xPos, yPos), 20, (166, 56, 56), cv2.FILLED)
                    # print(i, xPos, yPos)

        cTime = time.time()
        fps = 1/(cTime-pTime)
        pTime = cTime
        cv2.putText(img, f"FPS : {int(fps)}", (30, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 3)

        cv2.imshow('img', img)

    if cv2.waitKey(1) == ord('q'):
        break

这样我们就能再电脑上显示我们的手部关键点和坐标了,对于手势识别或者别的操作就可以通过获取到的关键点的坐标进行判断了。

附另一个手势识别实例

'''
@Time : 2021/2/6 15:41
@Author : WGS
@remarks :
'''
""" 从视频读取帧保存为图片"""
import cv2
import numpy as np

# cap = cv2.VideoCapture("C:/Users/lenovo/Videos/wgs.mp4") #读取文件
cap = cv2.VideoCapture(0)  # 读取摄像头

# 皮肤检测
def A(img):
    YCrCb = cv2.cvtColor(img, cv2.COLOR_BGR2YCR_CB)  # 转换至YCrCb空间
    (y, cr, cb) = cv2.split(YCrCb)  # 拆分出Y,Cr,Cb值
    cr1 = cv2.GaussianBlur(cr, (5, 5), 0)
    _, skin = cv2.threshold(cr1, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)  # Ostu处理
    res = cv2.bitwise_and(img, img, mask=skin)
    return res

def B(img):
    # binaryimg = cv2.Canny(Laplacian, 50, 200) #二值化,canny检测
    h = cv2.findContours(img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)  # 寻找轮廓
    contour = h[0]
    contour = sorted(contour, key=cv2.contourArea, reverse=True)  # 已轮廓区域面积进行排序
    # contourmax = contour[0][:, 0, :]#保留区域面积最大的轮廓点坐标
    bg = np.ones(dst.shape, np.uint8) * 255  # 创建白色幕布
    ret = cv2.drawContours(bg, contour[0], -1, (0, 0, 0), 3)  # 绘制黑色轮廓
    return ret

while (True):

    ret, frame = cap.read()
    # 下面三行可以根据自己的电脑进行调节
    src = cv2.resize(frame, (400, 350), interpolation=cv2.INTER_CUBIC)  # 窗口大小
    cv2.rectangle(src, (90, 60), (300, 300), (0, 255, 0))  # 框出截取位置
    roi = src[60:300, 90:300]  # 获取手势框图

    res = A(roi)  # 进行肤色检测
    cv2.imshow("0", roi)

    gray = cv2.cvtColor(res, cv2.COLOR_BGR2GRAY)
    dst = cv2.Laplacian(gray, cv2.CV_16S, ksize=3)
    Laplacian = cv2.convertScaleAbs(dst)

    contour = B(Laplacian)  # 轮廓处理
    cv2.imshow("2", contour)

    key = cv2.waitKey(50) & 0xFF
    if key == ord('q'):
        break
cap.release()
cv2.destroyAllWindows()

总结

到此这篇关于Python如何使用opencv进行手势识别的文章就介绍到这了,更多相关Python用opencv手势识别内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • opencv实现静态手势识别 opencv实现剪刀石头布游戏

    本文实例为大家分享了opencv实现静态手势识别的具体代码,供大家参考,具体内容如下 要想运行该代码,请确保安装了:python 2.7,opencv 2.4.9 效果如下: 算法如下: 把图片先进行处理,处理过程: 1.用膨胀图像与腐蚀图像相减的方法获得轮廓. 2.用二值化获得图像 3. 反色 经过如上的处理之后,图片为: 这之后就简单了,设计一个办法把三种图像区分开来即可. 代码如下: # -*- coding: cp936 -*- import cv2 import numpy impor

  • TensorFlow2.X结合OpenCV 实现手势识别功能

    使用Tensorflow 构建卷积神经网络,训练手势识别模型,使用opencv DNN 模块加载模型实时手势识别 效果如下: 先显示下部分数据集图片(0到9的表示,感觉很怪) 构建模型进行训练 数据集地址 import tensorflow as tf from tensorflow import keras from tensorflow.keras import datasets,layers,optimizers,Sequential,metrics from tensorflow.pyt

  • OpenCV+python手势识别框架和实例讲解

    基于OpenCV2.4.8和 python 2.7实现简单的手势识别. 以下为基本步骤 1.去除背景,提取手的轮廓 2. RGB->YUV,同时计算直方图 3.进行形态学滤波,提取感兴趣的区域 4.找到二值化的图像轮廓 5.找到最大的手型轮廓 6.找到手型轮廓的凸包 7.标记手指和手掌 8.把提取的特征点和手势字典中的进行比对,然后判断手势和形状 提取手的轮廓 cv2.findContours() 找到最大凸包cv2.convexHull(),然后找到手掌和手指的相对位置,定位手型的轮廓和关键点

  • OpenCV+Python3.5 简易手势识别的实现

    检测剪刀石头布三种手势,通过摄像头输入,方法如下: 选用合适颜色空间及阈值提取皮肤部分 使用滤波腐蚀膨胀等方法去噪 边缘检测 寻用合适方法分类 OpenCV用摄像头捕获视频 采用方法:调用OpenCV--cv2.VideoCapture() def video_capture(): cap = cv2.VideoCapture(0) while True: # capture frame-by-frame ret, frame = cap.read() # our operation on th

  • Python如何使用opencv进行手势识别详解

    目录 前言 原理 程序部分 附另一个手势识别实例 总结 前言 本项目是使用了谷歌开源的框架mediapipe,里面有非常多的模型提供给我们使用,例如面部检测,身体检测,手部检测等. 原理 首先先进行手部的检测,找到之后会做Hand Landmarks. 将手掌的21个点找到,然后我们就可以通过手掌的21个点的坐标推测出来手势,或者在干什么. 程序部分 第一安装Opencv pip install opencv-python 第二安装mediapipe pip install mediapipe

  • Python opencv操作深入详解

    直接读取图片 def display_img(file="p.jpeg"): img = cv.imread(file) print (img.shape) cv.imshow('image',img) cv.waitKey(0) cv.destroyAllWindows() 读取灰度图片 def display_gray_img(file="p.jpeg"): img = cv.imread(file,cv.IMREAD_GRAYSCALE) print (img

  • Python OpenCV阈值处理详解

    目录 前言 阈值技术简介 简单的阈值技术 阈值类型 简单阈值技术的实际应用 前言 图像分割是许多计算机视觉应用中的关键处理步骤,通常用于将图像划分为不同的区域,这些区域常常对应于真实世界的对象.因此,图像分割是图像识别和内容分析的重要步骤.图像阈值是一种简单.有效的图像分割方法,其中像素根据其强度值进行分区.在本文中,将介绍 OpenCV 所提供的主要阈值技术,可以将这些技术用作计算机视觉应用程序中图像分割的关键部分. 阈值技术简介 阈值处理是一种简单.有效的将图像划分为前景和背景的方法.图像分

  • Python OpenCV直方图均衡化详解

    目录 前言 灰度直方图均衡化 颜色直方图均衡化 前言 图像处理技术是计算机视觉项目的核心,通常是计算机视觉项目中的关键工具,可以使用它们来完成各种计算机视觉任务.在本文中,将介绍如何使用 OpenCV 函数 cv2.equalizeHist() 执行直方图均衡,并将其应用于灰度和彩色图像,cv2.equalizeHist() 函数将亮度归一化并提高图像的对比度. 灰度直方图均衡化 使用 cv2.equalizeHist() 函数来均衡给定灰度图像的对比度: # 加载图像并转换为灰度图像 imag

  • Python 通过URL打开图片实例详解

    Python 通过URL打开图片实例详解 不论是用OpenCV还是PIL,skimage等库,在之前做图像处理的时候,几乎都是读取本地的图片.最近尝试爬虫爬取图片,在保存之前,我希望能先快速浏览一遍图片,然后有选择性的保存.这里就需要从url读取图片了.查了很多资料,发现有这么几种方法,这里做个记录. 本文用到的图片URL如下: img_src = 'http://wx2.sinaimg.cn/mw690/ac38503ely1fesz8m0ov6j20qo140dix.jpg' 1.用Open

  • Python音频操作工具PyAudio上手教程详解

    ​ 0.引子 当需要使用Python处理音频数据时,使用python读取与播放声音必不可少,下面介绍一个好用的处理音频PyAudio工具包. PyAudio是Python开源工具包,由名思义,是提供对语音操作的工具包.提供录音播放处理等功能,可以视作语音领域的OpenCv. 1.简介 PyAudio为跨平台音频I / O库 PortAudio 提供 Python 绑定.使用PyAudio,您可以轻松地使用Python在各种平台上播放和录制音频,例如GNU / Linux,Microsoft Wi

  • 对python读取CT医学图像的实例详解

    需要安装OpenCV和SimpleItk. SimpleItk比较简单,直接pip install SimpleItk即可. 代码如下: #coding:utf-8 import SimpleITK as sitk import cv2 #LKDS-00058,-102.655469971,108.188810974,438.759994507,12.2279986879 if __name__ == '__main__': filename = "F:/cancer_solution/data

  • Python实现视频转换为字符画详解

    上次写了个华强买瓜字符视频的帖子,下面有人问如何保存,所以这次就写一个能将字符画视频保存下来的帖子,然而时不待我,华强纪元已经结束,现在是穿山甲的时代了. 首先读取视频,并转为字符.视频是从B站下载的,地址<激战江南>穿山甲名场面. 由于B站直接下载的视频为flv格式,而imageio并不支持,尽管可以用opencv来读取,但相比之下,用ffmepg转个码也不复杂,这样可以最大限度地利用华强买瓜的代码. 另外,视频素材过长不适合代码演示,所以从第2:10进行截取15s. 在命令行中输入 >

  • Python实现图片压缩的案例详解

    目录 1.引言 2.PIL模块 2.1 quality 方式 2.2 thumbnail方式 3.OpenCV模块 3.1 安装 3.2 执行代码 4.总结 1.引言 小屌丝:鱼哥,求助,求助 小鱼:啥情况,这火急火燎的? 小屌丝: 我要在某站进行认证,上传图片时提示,图片超过本站最大xxx限制. 小鱼:就这?? 小屌丝:对啊,我又不想换照片,又不像照片失真. 小鱼:就这要求? 小屌丝:对,能赶紧帮我不处理不? 小鱼:嗯~ 理论上是可以. 小屌丝:什么都别说,我懂,枸杞一袋! 小鱼:懂我,五分钟

  • Python+MediaPipe实现检测人脸功能详解

    目录 MediaPipe概述 人脸检测 MediaPipe概述 谷歌开源MediaPipe于2019年6月首次推出.它的目标是通过提供一些集成的计算机视觉和机器学习功能,使我们的生活变得轻松. MediaPipe是用于构建多模态(例如视频.音频或任何时间序列数据).跨平台(即eAndroid.IOS.web.边缘设备)应用ML管道的框架. Mediapipe还促进了机器学习技术在各种不同硬件平台上的演示和应用程序中的部署. 应用 人脸检测 多手跟踪 头发分割 目标检测与跟踪 目标:三维目标检测与

随机推荐