三分钟教会你用Python+OpenCV批量裁剪xml格式标注的图片

目录
  • 前言
  • xml文件格式
  • 代码思想
  • 完整代码
  • 效果展示
  • 总结

前言

在目标检测中,数据集常常使用labelimg标注,会生成xml文件。本文旨在根据xml标注文件来裁剪目标,以达到去除背景信息的目的。

xml文件格式

以下是一个标注好的图片生成的xml文件。具体含义见代码注释。

<annotation>                             <!--xml所属文件夹-->
	<folder>JPEGImages</folder>          <!--对应图片所属文件夹-->
	<filename>408.bmp</filename>
	<path>E:\JPEGImages\408.bmp</path>
	<source>
		<database>Unknown</database>
	</source>
	<size>           				<!--整张图片宽,高,3通道彩色-->
		<width>413</width>
		<height>342</height>
		<depth>3</depth>
	</size>
	<segmented>0</segmented>
	<object>							<!--标注的目标,一共5个框-->
		<name>bad_part</name>			<!--名称,也就是类别-->
		<pose>Unspecified</pose>
		<truncated>0</truncated>
		<difficult>0</difficult>
		<bndbox>                  <!--坐标,左上,左下,右上,右下-->
			<xmin>339</xmin>
			<ymin>103</ymin>
			<xmax>398</xmax>
			<ymax>173</ymax>
		</bndbox>
	</object>
	<object>
		<name>bad_part</name>
		<pose>Unspecified</pose>
		<truncated>0</truncated>
		<difficult>0</difficult>
		<bndbox>
			<xmin>265</xmin>
			<ymin>15</ymin>
			<xmax>364</xmax>
			<ymax>74</ymax>
		</bndbox>
	</object>
	<object>
		<name>bad_part</name>
		<pose>Unspecified</pose>
		<truncated>0</truncated>
		<difficult>0</difficult>
		<bndbox>
			<xmin>118</xmin>
			<ymin>33</ymin>
			<xmax>195</xmax>
			<ymax>52</ymax>
		</bndbox>
	</object>
	<object>
		<name>bad_part</name>
		<pose>Unspecified</pose>
		<truncated>0</truncated>
		<difficult>0</difficult>
		<bndbox>
			<xmin>113</xmin>
			<ymin>103</ymin>
			<xmax>177</xmax>
			<ymax>147</ymax>
		</bndbox>
	</object>
	<object>
		<name>bad_part</name>
		<pose>Unspecified</pose>
		<truncated>0</truncated>
		<difficult>0</difficult>
		<bndbox>
			<xmin>224</xmin>
			<ymin>298</ymin>
			<xmax>287</xmax>
			<ymax>326</ymax>
		</bndbox>
	</object>
</annotation>

代码思想

  1. 获取到标签文件路径和图片文件路径;
  2. 遍历图片文件夹获取到图片,并分割文件名;
  3. 根据图片的文件名加后缀xml得到具体的标签文件;
  4. 通过xml.etree.ElementTree读取xml文件;
  5. 遍历所有的目标框,获取到[];
  6. 通过cv2裁剪目标(先高后宽 参考文章:https://www.jb51.net/article/211183.htm中的第二中裁剪方法);
  7. 将裁剪好的图片保存到指定文件目录。

完整代码

'''
根据xml标签裁剪目标
1.文件夹中可以有除了图片格式或标签格式的文件,有判断可以忽略其他文件
2.图片未标注没有对应的xml文件自动忽略不会报错
3.同一个图片有多个真实框,会按名称_0,名称_1 …… 排列
4.图片本身的命名无规律会按3中的命名规则加上名称后缀重新命名。
'''

import cv2
import xml.etree.ElementTree as ET
import os 

img_path = r'E:/JPEGImages' #图片路径
xml_path = r'E:/Annotations' #标签路径
obj_img_path = r'E:/cut'   #目标裁剪图片存放路径

for img_file in os.listdir(img_path):    #遍历图片文件夹
    if img_file[-4:] in ['.bmp', '.jpg','.png']:    #判断文件是否为图片格式
        img_filename = os.path.join(img_path, img_file)  #将图片路径与图片名进行拼接
        img_cv = cv2.imread(img_filename)  #读取图片

        img_name = (os.path.splitext(img_file)[0])  #分割出图片名,如“000.png” 图片名为“000”
        xml_name = xml_path + '\\' + '%s.xml'%img_name  #利用标签路径、图片名、xml后缀拼接出完整的标签路径名

        if os.path.exists(xml_name):  #判断与图片同名的标签是否存在,因为图片不一定每张都打标
            root = ET.parse(xml_name).getroot() #利用ET读取xml文件
            count = 0 #目标框个数统计,防止目标文件覆盖
            for obj in root.iter('object'):  #遍历所有目标框
                name = obj.find('name').text   #获取目标框名称,即label名

                xmlbox = obj.find('bndbox')   #找到框目标
                x0 = xmlbox.find('xmin').text  #将框目标的四个顶点坐标取出
                y0 = xmlbox.find('ymin').text
                x1 = xmlbox.find('xmax').text
                y1 = xmlbox.find('ymax').text

                obj_img = img_cv[int(y0):int(y1), int(x0):int(x1)]  #cv2裁剪出目标框中的图片

                cv2.imwrite(obj_img_path + '\\' + '%s_%s'%(img_name, count) + '.jpg', obj_img)  #保存裁剪图片
                count += 1 #目标框统计值自增1

print("裁剪完成!")

效果展示

总结

  1. ET解析树基本上是xml标注文件必备的解析库。
  2. labelimg→ \rightarrow→xml→ \rightarrow→VOC数据集
  3. labelme→ \rightarrow→json→ \rightarrow→COCO数据集
  4. json是字典形式,内存小;xml是DTD文档,格式统一跨平台
  5. 去除背景信息是很重要的一环,可以避免模型监督学习时学习到相似的错误信息。

到此这篇关于用Python+OpenCV批量裁剪xml格式标注图片的文章就介绍到这了,更多相关Python+OpenCV批量裁剪xml格式图片内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • python opencv对图像进行旋转且不裁剪图片的实现方法

    最近在做深度学习时需要用到图像处理相关的操作,在度娘上找到的图片旋转方法千篇一律,旋转完成的图片都不是原始大小,很苦恼,于是google到歪果仁的网站扒拉了一个方法,亲测好用,再次嫌弃天下文章一大抄的现象,虽然我也是抄歪果仁的. 废话不多说了,直接贴代码了. def rotate_bound(image, angle): # grab the dimensions of the image and then determine the # center (h, w) = image.shape[

  • Python OpenCV图像指定区域裁剪的实现

    在工作中.在做数据集时,需要对图片进行处理,照相的图片我们只需要特定的部分,所以就想到裁剪一种所需的部分.当然若是图片有规律可循则使用opencv对其进行膨胀腐蚀等操作.这样更精准一些. 一.指定图像位置的裁剪处理 import os import cv2 # 遍历指定目录,显示目录下的所有文件名 def CropImage4File(filepath,destpath): pathDir = os.listdir(filepath) # 列出文件路径中的所有路径或文件 for allDir i

  • Python实现图片裁剪的两种方式(Pillow和OpenCV)

    在这篇文章里我们聊一下Python实现图片裁剪的两种方式,一种利用了Pillow,还有一种利用了OpenCV.两种方式都需要简单的几行代码,这可能也就是现在Python那么流行的原因吧. 首先,我们有一张原始图片,如下图所示: 原始图片 然后,我们利用OpenCV对其进行裁剪,代码如下所示: import cv2 img = cv2.imread("./data/cut/thor.jpg") print(img.shape) cropped = img[0:128, 0:512] #

  • 详解Python+opencv裁剪/截取图片的几种方式

    前言 在计算机视觉任务中,如图像分类,图像数据集必不可少.自己采集的图片往往存在很多噪声或无用信息会影响模型训练.因此,需要对图片进行裁剪处理,以防止图片边缘无用信息对模型造成影响.本文介绍几种图片裁剪的方式,供大家参考. 一.手动单张裁剪/截取 selectROI:选择感兴趣区域,边界框框选x,y,w,h selectROI(windowName, img, showCrosshair=None, fromCenter=None): . 参数windowName:选择的区域被显示在的窗口的名字

  • python通过opencv实现图片裁剪原理解析

    这篇文章主要介绍了python通过opencv实现图片裁剪原理解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 图像裁剪的基本概念 : 图像裁剪是指将图像中我们想要的研究区以外的区域去除,经常是按照行政区划或研究区域的边界对图像进行裁剪.例如,一张500×400的图像,我们只想要中间的250×200的区域,就可以使用图像裁剪将四周的区域去除. 在实际开发工作中,我们经常需要对图像进行分幅裁剪,按照ERDAS实际图像分幅裁剪的过程,可以将图像分

  • 三分钟教会你用Python+OpenCV批量裁剪xml格式标注的图片

    目录 前言 xml文件格式 代码思想 完整代码 效果展示 总结 前言 在目标检测中,数据集常常使用labelimg标注,会生成xml文件.本文旨在根据xml标注文件来裁剪目标,以达到去除背景信息的目的. xml文件格式 以下是一个标注好的图片生成的xml文件.具体含义见代码注释. <annotation> <!--xml所属文件夹--> <folder>JPEGImages</folder> <!--对应图片所属文件夹--> <filena

  • Python OpenCV实现裁剪并保存图片

    本文实例为大家分享了Python OpenCV实现裁剪并保存图片的具体代码,供大家参考,具体内容如下 问题描述 从图片中选出某一区域,Enter保存 1.jpg 代码 # -*- coding: utf-8 -*- # @Author : XerCis # @Time : 2020/3/18 20:00 # @Function: 从图片中选出某一区域,Enter保存 import cv2 # 读取图片 img = '1.jpg' img = cv2.imread(img) cv2.imshow(

  • Python实现批量修改xml文件的脚本

    今天分享一个我自己写的实用脚本,主要是将.xml文件进行批量的修改 首先,声明我并不是很了解.xml的相关知识,所以今天主要是以我遇到的问题来做个记录. 想要更多的了解xml,请看最后的资料分享. 效果展示: 因为这些是属于我们项目小组的,我也不清楚是不是有什么不能公开的,我就截取了一小部分,原本是用lambelme来修改的,但由于xml文件似乎读不进去,所以只有手动修改,将water改为blue(重要的是一个一个用记事本打开,手动修改),这时候我的第一生产力产生了,because I am l

  • Python使用ElementTree美化XML格式的操作

    Python中使用ElementTree可以很方便的处理XML,但是产生的XML文件内容会合并在一行,难以看清楚. 如下格式: <root><aa>aatext<cc>cctext</cc></aa><bb>bbtext<dd>ddtext<ee>eetext</ee></dd></bb></root> 使用minidom模块中的toprettyxml和write

  • python自定义解析简单xml格式文件的方法

    本文实例讲述了python自定义解析简单xml格式文件的方法.分享给大家供大家参考.具体分析如下: 因为公司内部的接口返回的字串支持2种形式:php数组,xml:结果php数组python不能直接用,而xml字符串的格式不是标准的,所以也不能用标准模块解析.[不标准的地方是某些节点会的名称是以数字开头的],所以写个简单的脚步来解析一下文件,用来做接口测试. #!/usr/bin/env python #encoding: utf-8 import re class xmlparse: def _

  • python opencv 批量改变图片的尺寸大小的方法

    我目标文件夹下有一大批图片,我要把它转变为指定尺寸大小的图片,用pthon和opencv实现的. 以上为原图片. import cv2 import os # 按指定图像大小调整尺寸 def resize_image(image, height = 640, width = 480): top, bottom, left, right = (0,0,0,0) # 获取图片尺寸 h, w, _ = image.shape # 对于长宽不等的图片,找到最长的一边 longest_edge = max

  • 十分钟教会你用Python处理CSV文件

    目录 前言 Python库:csv 读取csv文件 使用csv.reader读取数据 使用csv.DictReader读取数据 写入csv文件 使用csv.writer写入数据 使用csv.DictWriter写入数据 总结 前言 在前几年,如果你和嵌入式开发人员推荐Python,大概会是这样一种场景: A:”诶,老王,你看Python开发这么方便,以后会不会用到嵌入式设备?“ B:“别做梦了,那玩意儿速度贼慢,肯定满足不了性能要求…” 但近几年,随着半导体行业的迅猛发展,嵌入式处理器的性能有了

  • Python实现批量把SVG格式转成png、pdf格式的代码分享

    需要提前安装cairosvg模块,下载地址http://cairosvg.org/download/ Code: #! encoding:UTF-8 import cairosvg import os   loop = True while loop:     svgDir = raw_input("请输入SVG文件目录")     if os.path.exists(svgDir) and os.path.isdir(svgDir):         loop = False    

  • python利用lxml读写xml格式的文件

    之前在转换数据集格式的时候需要将json转换到xml文件,用lxml包进行操作非常方便. 1. 写xml文件 a) 用etree和objectify from lxml import etree, objectify E = objectify.ElementMaker(annotate=False) anno_tree = E.annotation( E.folder('VOC2014_instance'), E.filename("test.jpg"), E.source( E.d

  • c#批量整理xml格式示例

    复制代码 代码如下: using System;using System.Collections.Generic;using System.ComponentModel;using System.Data;using System.Drawing;using System.Text;using System.Windows.Forms;using System.Xml;using System.IO; namespace WindowsApplication1{    public partia

随机推荐