Python利用机器学习算法实现垃圾邮件的识别
开发工具
**Python版本:**3.6.4
相关模块:
scikit-learn模块;
jieba模块;
numpy模块;
以及一些Python自带的模块。
环境搭建
安装Python并添加到环境变量,pip安装需要的相关模块即可。
逐步实现
(1)划分数据集
网上用于垃圾邮件识别的数据集大多是英文邮件,所以为了表示诚意,我花了点时间找了一份中文邮件的数据集。数据集划分如下:
训练数据集:
7063封正常邮件(data/normal文件夹下);
7775封垃圾邮件(data/spam文件夹下)。
测试数据集:
共392封邮件(data/test文件夹下)。
(2)创建词典
数据集里的邮件内容一般是这样的:
首先,我们利用正则表达式过滤掉非中文字符,然后再用jieba分词库对语句进行分词,并清除一些停用词,最后再利用上述结果创建词典,词典格式为:
{“词1”: 词1词频, “词2”: 词2词频…}
这些内容的具体实现均在**“utils.py”**文件中体现,在主程序中(train.py)调用即可:
最终结果保存在**“results.pkl”**文件内。
大功告成了么?当然没有!!!
现在的词典里有52113个词,显然太多了,有些词只出现了一两次,后续特征提取的时候一直空占着一个维度显然是不明智的做法。因此,我们只保留词频最高的4000个词作为最终创建的词典:
最终结果保存在**“wordsDict.pkl”**文件内。
(3)特征提取
词典准备好之后,我们就可以把每封信的内容转换为词向量了,显然其维度为4000,每一维代表一个高频词在该封信中出现的频率,最后,我们将这些词向量合并为一个大的特征向量矩阵,其大小为:
(7063+7775)×4000
即前7063行为正常邮件的特征向量,其余为垃圾邮件的特征向量。
上述内容的具体实现仍然在**“utils.py”**文件中体现,在主程序中调用如下:
最终结果保存在**“fvs_%d_%d.npy”**文件内,其中第一个格式符代表正常邮件的数量,第二个格式符代表垃圾邮件的数量。
(4)训练分类器
我们使用scikit-learn机器学习库来训练分类器,模型选择朴素贝叶斯分类器和SVM(支持向量机):
(5)性能测试
利用测试数据集对模型进行测试:
结果如下:
可以发现两个模型的性能是差不多的(SVM略胜于朴素贝叶斯),但SVM更倾向于向垃圾邮件的判定。
到此这篇关于Python实现垃圾邮件的识别的文章就介绍到这了,更多相关Python识别垃圾邮件内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!
相关推荐
-
教你如何用Python实现人脸识别(含源代码)
工具与图书馆 Python-3.x CV2-4.5.2 矮胖-1.20.3 人脸识别-1.3.0 若要安装上述软件包,请使用以下命令. pip install numpy opencv-python 要安装FaceRecognition,首先安装dlib包. pip install dlib 现在,使用以下命令安装面部识别模块 pip install face_recognition 下载人脸识别Python代码 请下载python面部识别项目的源代码: 人脸识别工程代码 项目数据集 我们可以使
-
怎么用Python识别手势数字
前言 谷歌出了一个开源的.跨平台的.可定制化的机器学习解决方案工具包,给在线流媒体(当然也可以用于普通的视频.图像等)提供了机器学习解决方案.感兴趣的同学可以打开这个网址了解详情:mediapipe.dev/ 它提供了手势.人体姿势.人脸.物品等识别和追踪功能,并提供了C++.Python.JavaScript等编程语言的工具包以及iOS.Android平台的解决方案,今天我们就来看一下如何使用MediaPipe提供的手势识别来写一个Python代码识别手势中的数字:0-5 准备工作 电脑需要安
-
python简单验证码识别的实现过程
目录 1. 环境准备 1.1 安装pillow 和 pytesseract 1.2 安装Tesseract-OCR.exe 1.3 更改pytesseract.py的ocr路径 2. 测试识别效果 3. 实战案例–实现古诗文网验证码自动识别登录 总结 1. 环境准备 1.1 安装pillow 和 pytesseract python模块库需要 pillow 和 pytesseract 这两个库,直接pip install 安装就好了. pip install pillow pip install
-
python 如何做一个识别率百分百的OCR
写在前面 当然这里说的百分百可能有点夸张,但其实想象一下,游戏里面的某个窗口的字符就是那种样子,不会变化的.而且识别的字符可能也不需要太多.中文有大几千个常用字,还有各种符号,其实都不需要. 这里针对的场景很简单,主要是有以下几点: 识别的字符不多:只要识别几十个常用字符即可,比如说26个字母,数字,还有一些中文. 背景统一,字体一致:我们不是做验证码识别,我们要识别的字符都是清晰可见的. 字符和背景易分割:一般来说就是对图片灰度化之后,黑底白字或者白底黑字这种. 技术栈 这里用到的主要就是py
-
如何利用Python识别图片中的文字详解
一.Tesseract 文字识别是ORC的一部分内容,ORC的意思是光学字符识别,通俗讲就是文字识别.Tesseract是一个用于文字识别的工具,我们结合Python使用可以很快的实现文字识别.但是在此之前我们需要完成一个繁琐的工作. (1)Tesseract的安装及配置 Tesseract的安装我们可以移步到该网址 https://digi.bib.uni-mannheim.de/tesseract/,我们可以看到如下界面: 有很多版本供大家选择,大家可以根据自己的需求选择.其中w32表示32
-
Python利用机器学习算法实现垃圾邮件的识别
开发工具 **Python版本:**3.6.4 相关模块: scikit-learn模块: jieba模块: numpy模块: 以及一些Python自带的模块. 环境搭建 安装Python并添加到环境变量,pip安装需要的相关模块即可. 逐步实现 (1)划分数据集 网上用于垃圾邮件识别的数据集大多是英文邮件,所以为了表示诚意,我花了点时间找了一份中文邮件的数据集.数据集划分如下: 训练数据集: 7063封正常邮件(data/normal文件夹下): 7775封垃圾邮件(data/spam文件夹下
-
Python利用 SVM 算法实现识别手写数字
目录 前言 使用 SVM 进行手写数字识别 参数 C 和 γ 对识别手写数字精确度的影响 完整代码 前言 支持向量机 (Support Vector Machine, SVM) 是一种监督学习技术,它通过根据指定的类对训练数据进行最佳分离,从而在高维空间中构建一个或一组超平面.在博文<OpenCV-Python实战(13)--OpenCV与机器学习的碰撞>中,我们已经学习了如何在 OpenCV 中实现和训练 SVM 算法,同时通过简单的示例了解了如何使用 SVM 算法.在本文中,我们将学习如何
-
python利用K-Means算法实现对数据的聚类案例详解
目的是为了检测出采集数据中的异常值.所以很明确,这种情况下的簇为2:正常数据和异常数据两大类 1.安装相应的库 import matplotlib.pyplot as plt # 用于可视化 from sklearn.cluster import KMeans # 用于聚类 import pandas as pd # 用于读取文件 2.实现聚类 2.1 读取数据并可视化 # 读取本地数据文件 df = pd.read_excel("../data/output3.xls", heade
-
Python实现机器学习算法的分类
Python算法的分类 对葡萄酒数据集进行测试,由于数据集是多分类且数据的样本分布不平衡,所以直接对数据测试,效果不理想.所以使用SMOTE过采样对数据进行处理,对数据去重,去空,处理后数据达到均衡,然后进行测试,与之前测试相比,准确率提升较高. 例如:决策树: Smote处理前: Smote处理后: from typing import Counter from matplotlib import colors, markers import numpy as np import pandas
-
Python利用Canny算法检测硬币边缘
目录 一.问题背景 二.Canny 算法 (一).高斯平滑 (二)Sobel算子计算梯度 (三)非极大化抑制 (四)滞后边缘跟踪 一.问题背景 纸面上有一枚一元钱的银币,你能在 Canny 和 Hough 的帮助下找到它的坐标方程吗? 确定一个圆的坐标方程,首先我们要检测到其边缘,然后求出其在纸面上的相对位置以及半径大小. 在这篇文章中我们使用 Canny 算法来检测出纸面上银币的边缘. 二.Canny 算法 Canny 可以用于拿到图像中物体的边缘,其步骤如下 进行高斯平滑 计算图像梯度(记录
-
Python利用FlashText算法实现替换字符串
目录 前言 1.准备 2.基本使用 提取关键词 替换关键词 关键词大小写敏感 标记关键词位置 获取目前所有的关键词 批量添加关键词 单一或批量删除关键词 3.高级使用 支持额外信息 支持特殊单词边界 4.结尾 前言 FlashText 算法是由 Vikash Singh 于2017年发表的大规模关键词替换算法,这个算法的时间复杂度仅由文本长度(N)决定,算法时间复杂度为O(N). 而对于正则表达式的替换,算法时间复杂度还需要考虑被替换的关键词数量(M),因此时间复杂度为O(MxN). 简而言之,
-
Python内存管理方式和垃圾回收算法解析
概要 在列表,元组,实例,类,字典和函数中存在循环引用问题.有 __del__ 方法的实例会以健全的方式被处理.给新类型添加GC支持是很容易的.支持GC的Python与常规的Python是二进制兼容的. 分代式回收能运行工作(目前是三个分代).由 pybench 实测的结果是大约有百分之四的开销.实际上所有的扩展模块都应该依然如故地正常工作(我不得不修改了标准发行版中的 new 和 cPickle 模块).一个叫做 gc 的新模块马上就可以用来调试回收器和设置调试选项. 回收器应该是跨平台可移植
-
给你选择Python语言实现机器学习算法的三大理由
基于以下三个原因,我们选择Python作为实现机器学习算法的编程语言:(1) Python的语法清晰:(2) 易于操作纯文本文件:(3) 使用广泛,存在大量的开发文档. 可执行伪代码 Python具有清晰的语法结构,大家也把它称作可执行伪代码(executable pseudo-code).默认安装的Python开发环境已经附带了很多高级数据类型,如列表.元组.字典.集合.队列等,无需进一步编程就可以使用这些数据类型的操作.使用这些数据类型使得实现抽象的数学概念非常简单.此外,读者还可以使用自己
-
Python机器学习算法之决策树算法的实现与优缺点
1.算法概述 决策树算法是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法. 分类算法是利用训练样本集获得分类函数即分类模型(分类器),从而实现将数据集中的样本划分到各个类中.分类模型通过学习训练样本中属性集与类别之间的潜在关系,并以此为依据对新样本属于哪一类进行预测. 决策树算法是直观运用概率分析的一种图解法,是一种十分常用的分类方法,属于有监督学习. 决策树是一种树形结构,其中每个内部结点表示在一个属性上的测试,每个
-
Python机器学习算法之k均值聚类(k-means)
一开始的目的是学习十大挖掘算法(机器学习算法),并用编码实现一遍,但越往后学习,越往后实现编码,越发现自己的编码水平低下,学习能力低.这一个k-means算法用Python实现竟用了三天时间,可见编码水平之低,而且在编码的过程中看了别人的编码,才发现自己对numpy认识和运用的不足,在自己的代码中有很多可以优化的地方,比如求均值的地方可以用mean直接对数组求均值,再比如去最小值的下标,我用的是argsort排序再取列表第一个,但是有argmin可以直接用啊.下面的代码中这些可以优化的并没有改,
随机推荐
- Swift、Objective-C、Cocoa混合编程设置指南
- 为Java程序员准备的10分钟Perl教程
- javascript实现动态统计图开发实例
- Tomcat之web应用的目录组成结构_动力节点Java学院整理
- Android实现水波纹控件的方法
- python通过索引遍历列表的方法
- header与缓冲区之间的深层次分析
- 利用iscroll4实现轮播图效果实例代码
- 基于JS实现9种不同的面包屑和分布式多步骤导航效果
- 简单模拟node.js中require的加载机制
- Shell处理带空格的文件名的方法
- C++中抽象类和接口的区别介绍
- Java初学者问题图解(动力节点Java学院整理)
- 教你几种在SQLServer中删除重复数据方法
- 写得不错的jquery table鼠标经过变色代码
- 基于eclipse.ini内存设置的问题详解
- Visual C#类的定义及实现方法实例解析
- Python基于dom操作xml数据的方法示例
- vue根据值给予不同class的实例
- Vue2.x Todo之自定义指令实现自动聚焦的方法