Python+OpenCV图像处理——图像二值化的实现

简介:图像二值化就是将图像上的像素点的灰度值设置为0或255,也就是将整个图像呈现出明显的黑白效果的过程。

普通图像二值化

代码如下:

import cv2 as cv
import numpy as np

#全局阈值
def threshold_demo(image):
  gray = cv.cvtColor(image, cv.COLOR_RGB2GRAY) #把输入图像灰度化
  #直接阈值化是对输入的单通道矩阵逐像素进行阈值分割。
  ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY | cv.THRESH_TRIANGLE)
  print("threshold value %s"%ret)
  cv.namedWindow("binary0", cv.WINDOW_NORMAL)
  cv.imshow("binary0", binary)

#局部阈值
def local_threshold(image):
  gray = cv.cvtColor(image, cv.COLOR_RGB2GRAY) #把输入图像灰度化
  #自适应阈值化能够根据图像不同区域亮度分布,改变阈值
  binary = cv.adaptiveThreshold(gray, 255, cv.ADAPTIVE_THRESH_GAUSSIAN_C,cv.THRESH_BINARY, 25, 10)
  cv.namedWindow("binary1", cv.WINDOW_NORMAL)
  cv.imshow("binary1", binary)

#用户自己计算阈值
def custom_threshold(image):
  gray = cv.cvtColor(image, cv.COLOR_RGB2GRAY) #把输入图像灰度化
  h, w =gray.shape[:2]
  m = np.reshape(gray, [1,w*h])
  mean = m.sum()/(w*h)
  print("mean:",mean)
  ret, binary = cv.threshold(gray, mean, 255, cv.THRESH_BINARY)
  cv.namedWindow("binary2", cv.WINDOW_NORMAL)
  cv.imshow("binary2", binary)

src = cv.imread('E:/imageload/kobe.jpg')
cv.namedWindow('input_image', cv.WINDOW_NORMAL) #设置为WINDOW_NORMAL可以任意缩放
cv.imshow('input_image', src)
threshold_demo(src)
local_threshold(src)
custom_threshold(src)
cv.waitKey(0)
cv.destroyAllWindows()

运行结果:

注意:

1.全局阈值

①OpenC的threshold函数进行全局阈值。其函数原型为:threshold(src, thresh, maxval, type[, dst]) -> retval, dst

src参数表示输入图像(多通道,8位或32位浮点)。

thresh参数表示阈值。

maxval参数表示与THRESH_BINARY和THRESH_BINARY_INV阈值类型一起使用设置的最大值。

type参数表示阈值类型。

retval参数表示返回的阈值。若是全局固定阈值算法,则返回thresh参数值。若是全局自适应阈值算法,则返回自适应计算得出的合适阈值。

dst参数表示输出与src相同大小和类型以及相同通道数的图像。

②type参数阈值类型这部分参考博客:https://blog.csdn.net/iracer/article/details/49232703  ,写的很不错。

阈值类型:

阈值类型图示:

③type参数单独选择上述五种阈值类型时,是固定阈值算法,效果比较差。

此外还有自适应阈值算法:(自适应计算合适的阈值,而不是固定阈值)

比如结合cv.THRESH_OTSU,写成cv.THRESH_BINARY | cv.THRESH_OTSU。例子:ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY | cv.THRESH_OTSU) #大律法,全局自适应阈值,第二个参数值0可改为任意数字但不起作用。

比如结合cv.THRESH_TRIANGLE,写成cv.THRESH_BINARY | cv.THRESH_TRIANGLE。例子:ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY | cv.THRESH_TRIANGLE) #TRIANGLE法,全局自适应阈值,第二个参数值0可改为任意数字但不起作用,适用于单个波峰。

补:

cv.THRESH_OTSU和cv.THRESH_TRIANGLE也可单独使用,不一定要写成和固定阈值算法结合的形式。单独写和结合起来写,都是自适应阈值算法优先。

例子:ret, binary = cv.threshold(gray, 0, 255,  cv.THRESH_OTSU) #大律法       ret, binary = cv.threshold(gray, 0, 255,  cv.THRESH_TRIANGLE) #TRIANGLE法

2.局部阈值

OpenCV的adaptiveThreshold函数进行局部阈值。函数原型为:adaptiveThreshold(src, maxValue, adaptiveMethod, thresholdType, blockSize, C[, dst]) -> dst

src参数表示输入图像(8位单通道图像)。

maxValue参数表示使用 THRESH_BINARY 和 THRESH_BINARY_INV 的最大值.

adaptiveMethod参数表示自适应阈值算法,平均 (ADAPTIVE_THRESH_MEAN_C)或高斯(ADAPTIVE_THRESH_GAUSSIAN_C)。

thresholdType参数表示阈值类型,必须为THRESH_BINARY或THRESH_BINARY_INV的阈值类型。

blockSize参数表示块大小(奇数且大于1,比如3,5,7........ )。

C参数是常数,表示从平均值或加权平均值中减去的数。 通常情况下,这是正值,但也可能为零或负值。

补:在使用平均和高斯两种算法情况下,通过计算每个像素周围blockSize x blockSize大小像素块的加权均值并减去常量C即可得到自适应阈值。如果使用平均的方法,则所有像素周围的权值相同;如果使用高斯的方法,则每个像素周围像素的权值则根据其到中心点的距离通过高斯方程得到。

参考:https://blog.csdn.net/guduruyu/article/details/68059450

3.numpy的reshape函数是给数组一个新的形状而不改变其数据,函数原型:reshape(a, newshape, order='C')

a参数表示需要重新形成的原始数组。

newshape参数表示int或int类型元组(tuple),若为(1, 3),表示生成的新数组是1行3列。

order参数表表示使用此索引顺序读取a的元素,并使用此索引顺序将元素放置到重新形成的数组中。

函数返回值:如果可能的话,这将是一个新的视图对象; 否则,它会成为副本。

以上就是Python+OpenCV图像处理——图像二值化的实现的详细内容,更多关于python 图像二值化的资料请关注我们其它相关文章!

(0)

相关推荐

  • Python+OpenCV图像处理——打印图片属性、设置存储路径、调用摄像头

    一. 打印图片属性.设置图片存储路径 代码如下: #打印图片的属性.保存图片位置 import cv2 as cv import numpy as np #numpy是一个开源的Python科学计算库 def get_image_info(image): print(type(image)) #type() 函数如果只有第一个参数则返回对象的类型 在这里函数显示图片类型为 numpy类型的数组 print(image.shape) #图像矩阵的shape属性表示图像的大小,shape会返回tup

  • python进行OpenCV实战之画图(直线、矩形、圆形)

    前言 在上一节我们通过使用NumPy的数组分割成功的在我们的图像上画了一个绿色的方块,但是如果我们想画一个单一的线条或者圆圈该怎么办呢?NumPy没有提供相关的功能,但是OpenCV提供了相关的函数,在本节就将为大家介绍三个基本的OpenCV画图方法: cv2.line() #1 cv2.rectangle() #2 cv2.circle() #3 1 画直线和矩形 在开始我们用OpenCV画我们的杰作之前,我们需要定义一个画布 import numpy as np #1 import cv2

  • python opencv pytesseract 验证码识别的实现

    一.环境配置 需要 pillow 和 pytesseract 这两个库,pip install 安装就好了. install pillow -i http://pypi.douban.com/simple --trusted-host pypi.douban.com pip install pytesseract -i http://pypi.douban.com/simple --trusted-host pypi.douban.com 安装好Tesseract-OCR.exe pytesse

  • Python+OpenCV图像处理——实现直线检测

    简介: 1.霍夫变换(Hough Transform) 霍夫变换是图像处理中从图像中识别几何形状的基本方法之一,应用很广泛,也有很多改进算法.主要用来从图像中分离出具有某种相同特征的几何形状(如,直线,圆等).最基本的霍夫变换是从黑白图像中检测直线(线段). 2.Hough变换的原理是将特定图形上的点变换到一组参数空间上,根据参数空间点的累计结果找到一个极大值对应的解,那么这个解就对应着要寻找的几何形状的参数(比如说直线,那么就会得到直线的斜率k与常熟b,圆就会得到圆心与半径等等) 3.霍夫线变

  • Python环境使用OpenCV检测人脸实现教程

    一.文章概述 本文将要讲述的是Python环境下如何用OpenCV检测人脸,本文的主要内容分为: 1.检测图片中的人脸 2.实时检测视频中出现的人脸 3.用运设备的摄像头实时检测人脸 二:准备工作 提前做的准备: 安装好Python3 下载安装OpenCV库,方法是 pip install opencv-python -i https://mirrors.aliyun.com/pypi/simple/ --trusted-host=mirrors.aliyun.com/pypi/simple 下

  • Python+OpenCV图像处理——实现轮廓发现

    简介:轮廓发现是基于图像边缘提取的基础寻找对象轮廓的方法,所以边缘提取的阈值选定会影响最终轮廓发现结果. 代码如下: import cv2 as cv import numpy as np def contours_demo(image): dst = cv.GaussianBlur(image, (3, 3), 0) #高斯模糊去噪 gray = cv.cvtColor(dst, cv.COLOR_RGB2GRAY) ret, binary = cv.threshold(gray, 0, 25

  • Python+OpenCV图像处理—— 色彩空间转换

    一.色彩空间的转换 代码如下: #色彩空间转换 import cv2 as cv def color_space_demo(img): gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY) #RGB转换为GRAY 这里的GRAY是单通道的 cv.imshow("gray", gray) hsv = cv.cvtColor(img, cv.COLOR_BGR2HSV) #RGB转换为HSV cv.imshow("hsv", hsv) y

  • opencv python如何实现图像二值化

    这篇文章主要介绍了opencv python如何实现图像二值化,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 代码如下 import cv2 as cv import numpy as np import matplotlib.pyplot as plt # 二值图像就是将灰度图转化成黑白图,没有灰,在一个值之前为黑,之后为白 # 有全局和局部两种 # 在使用全局阈值时,我们就是随便给了一个数来做阈值,那我们怎么知道我们选取的这个数的好坏呢?答

  • Python+OpenCV图像处理——图像二值化的实现

    简介:图像二值化就是将图像上的像素点的灰度值设置为0或255,也就是将整个图像呈现出明显的黑白效果的过程. 普通图像二值化 代码如下: import cv2 as cv import numpy as np #全局阈值 def threshold_demo(image): gray = cv.cvtColor(image, cv.COLOR_RGB2GRAY) #把输入图像灰度化 #直接阈值化是对输入的单通道矩阵逐像素进行阈值分割. ret, binary = cv.threshold(gray

  • 详解Python+OpenCV实现图像二值化

    目录 一.图像二值化 1.效果 2.源码 二.图像二值化(调节阈值) 1.源码一 2.源码二 一.图像二值化 1.效果 2.源码 import cv2 import numpy as np import matplotlib.pyplot as plt # img = cv2.imread('test.jpg') #这几行是对图像进行降噪处理,但事还存在一些问题. # dst = cv2.fastNlMeansDenoisingColored(img,None,10,10,7,21) # plt

  • C#数字图像处理之图像二值化(彩色变黑白)的方法

    本文实例讲述了C#数字图像处理之图像二值化(彩色变黑白)的方法.分享给大家供大家参考.具体如下: //定义图像二值化函数 private static Bitmap PBinary(Bitmap src,int v) { int w = src.Width; int h = src.Height; Bitmap dstBitmap = new Bitmap(src.Width ,src.Height ,System .Drawing .Imaging .PixelFormat .Format24

  • 关于python3 opencv 图像二值化的问题(cv2.adaptiveThreshold函数)

    前一篇研究了opencv二值化方法threshold的使用,但是这个方法也存在一定的局限性,假如有一张图存在明显的明暗不同的区域,如下图 可以看到左边部分因为整体偏暗,导致二值化后变成全黑,丢失了所有细节,这显然不是我们想要的结果. 原因threshold函数使用一个阈值对图像进行二值化,导致小于这个阈值的像素点全都变成0.因此使用一个阈值的二值化方法并不适用于上面的这张图.那怎么搞? 很明显,上面这张图只有左右两个区域明显亮度不同,最简单的方法就是把图分成两个区域,每个区域分别进行二值化,也就

  • python验证码图片处理(二值化)

    写在最前面: 这个我打算分几次写,由于我们通过selenium拿到的图片会很模糊,所以使用Tesseract识别之前要对图片先进行处理. 第一步就是二值化,设定阈值,低于阈值全部为白色(置0),其余黑色(置1). import pytesseract from PIL import Image,ImageEnhance def binaryzation(threshold=145): #降噪,图片二值化 table = [] for i in range(256): if i < thresho

  • 基于c#图像灰度化、灰度反转、二值化的实现方法详解

    图像灰度化:将彩色图像转化成为灰度图像的过程成为图像的灰度化处理.彩色图像中的每个像素的颜色有R.G.B三个分量决定,而每个分量有255中值可取,这样一个像素点可以有1600多万(255*255*255)的颜色的变化范围.而灰度图像是R.G.B三个分量相同的一种特殊的彩色图像,其一个像素点的变化范围为255种,所以在数字图像处理种一般先将各种格式的图像转变成灰度图像以使后续的图像的计算量变得少一些.灰度图像的描述与彩色图像一样仍然反映了整幅图像的整体和局部的色度和亮度等级的分布和特征.图像的灰度

  • python opencv 二值化 计算白色像素点的实例

    贴部分代码 #! /usr/bin/env python # -*- coding: utf-8 -*- import cv2 import numpy as np from PIL import Image area = 0 def ostu(img): global area image=cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 转灰度 blur = cv2.GaussianBlur(image,(5,5),0) # 阈值一定要设为 0 !高斯模糊 re

  • Python OpenCV图像处理之图像滤波特效详解

    目录 1分类 2邻域滤波 2.1线性滤波 2.2非线性滤波 3频域滤波 3.1低通滤波 3.2高通滤波 1 分类 图像滤波按图像域可分为两种类型: 邻域滤波(Spatial Domain Filter),其本质是数字窗口上的数学运算.一般用于图像平滑.图像锐化.特征提取(如纹理测量.边缘检测)等,邻域滤波使用邻域算子——利用给定像素周围像素值以决定此像素最终输出的一种算子 频域滤波(Frequency Domain Filter),其本质是对像素频率的修改.一般用于降噪.重采样.图像压缩等. 按

随机推荐