python实现粒子群算法

粒子群算法

粒子群算法源于复杂适应系统(Complex Adaptive System,CAS)。CAS理论于1994年正式提出,CAS中的成员称为主体。比如研究鸟群系统,每个鸟在这个系统中就称为主体。主体有适应性,它能够与环境及其他的主体进行交流,并且根据交流的过程“学习”或“积累经验”改变自身结构与行为。整个系统的演变或进化包括:新层次的产生(小鸟的出生);分化和多样性的出现(鸟群中的鸟分成许多小的群);新的主题的出现(鸟寻找食物过程中,不断发现新的食物)。

PSO初始化为一群随机粒子(随机解)。然后通过迭代找到最优解。在每一次的迭代中,粒子通过跟踪两个“极值”(pbest,gbest)来更新自己。
在找到这两个最优值后,粒子通过下面的公式来更新自己的速度和位置。

i 表示第 i 个粒子, d 表示粒子的第 d 个维度。r1, r2 表示两个位于 [0, 1] 的随机数(对于一个粒子的不同维度,r1, r2 的值不同)。pbest[i] 是指粒子取得最高(低)适应度时的位置,gbest[i] 指的是整个系统取得最高(低)适应度时的位置。

实践

我们用 PSO 算法求解如下函数的最小值

可以在空间画出图像

下图是使用 5 个粒子的收敛情况

可以看到,fitness 在第 12 轮就几乎收敛到 -10.0。

下面是完整代码

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

INF = 1e5

def plot_cost_func():
  """画出适应度函数"""
  fig = plt.figure()
  ax = Axes3D(fig)
  X = np.arange(-4, 4, 0.25)
  Y = np.arange(-4, 4, 0.25)
  X, Y = np.meshgrid(X, Y)
  Z = (X**2 + Y**2) - 10
  ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='rainbow')
  plt.show()

def fitness(x):
  return x[0]**2 + x[1]**2 - 10

class PSOSolver(object):
  def __init__(self, n_iter, weight=0.5, c1=2, c2=2, n_particle=5):
    self.n_iter = n_iter
    self.weight = weight
    self.c1 = c1
    self.c2 = c2
    self.n_particle = n_particle
    self.gbest = np.random.rand(2)
    # gbest 对应的函数值
    self.gbest_fit = fitness(self.gbest)
    # 将位置初始化到 [-5, 5]
    self.location = 10 * np.random.rand(n_particle, 2) - 5
    # 将速度初始化到 [-1, 1]
    self.velocity = 2 * np.random.rand(n_particle, 2) - 1
    self.pbest_fit = np.tile(INF, n_particle)
    self.pbest = np.zeros((n_particle, 2))
    # 记录每一步的最优值
    self.best_fitness = []

  def new_velocity(self, i):
    r = np.random.rand(2, 2)
    v = self.velocity[i]
    x = self.location[i]
    pbest = self.pbest[i]
    return self.weight * v + self.c1 * r[0] * (pbest - x) + \
        self.c2 * r[1] * (self.gbest - x)

  def solve(self):
    for it in range(self.n_iter):
      for i in range(self.n_particle):
        v = self.new_velocity(i)
        x = self.location[i] + v
        fit_i = fitness(x)
        if fit_i < self.pbest_fit[i]:
          self.pbest_fit[i] = fit_i
          self.pbest[i] = x
          if fit_i < self.gbest_fit:
            self.gbest_fit = fit_i
            self.gbest = x
        self.velocity[i] = v
        self.location[i] = x
      self.best_fitness.append(self.gbest_fit)

if __name__ == '__main__':
  plot_cost_func()
  n_iter = 20
  s = PSOSolver(n_iter)
  s.solve()
  print(s.gbest_fit)
  plt.title("Fitness Curve")
  plt.xlabel("iter")
  plt.ylabel("fitness")
  plt.plot(np.arange(n_iter), np.array(s.best_fitness))
  plt.show()

以上就是python实现粒子群算法的详细内容,更多关于python 粒子群算法的资料请关注我们其它相关文章!

(0)

相关推荐

  • Python编程实现粒子群算法(PSO)详解

    1 原理 粒子群算法是群智能一种,是基于对鸟群觅食行为的研究和模拟而来的.假设在鸟群觅食范围,只在一个地方有食物,所有鸟儿看不到食物(不知道食物的具体位置),但是能闻到食物的味道(能知道食物距离自己位置).最好的策略就是结合自己的经验在距离鸟群中距离食物最近的区域搜索. 利用粒子群算法解决实际问题本质上就是利用粒子群算法求解函数的最值.因此需要事先把实际问题抽象为一个数学函数,称之为适应度函数.在粒子群算法中,每只鸟都可以看成是问题的一个解,这里我们通常把鸟称之为粒子,每个粒子都拥有: 位置,可

  • python3实现单目标粒子群算法

    本文实例为大家分享了python3单目标粒子群算法的具体代码,供大家参考,具体内容如下 关于PSO的基本知识......就说一下算法流程 1) 初始化粒子群: 随机设置各粒子的位置和速度,默认粒子的初始位置为粒子最优位置,并根据所有粒子最优位置,选取群体最优位置. 2) 判断是否达到迭代次数: 若没有达到,则跳转到步骤3).否则,直接输出结果. 3) 更新所有粒子的位置和速度: 4) 计算各粒子的适应度值. 将粒子当前位置的适应度值与粒子最优位置的适应度值进行比较,决定是否更新粒子最优位置:将所

  • Python 实现国产SM3加密算法的示例代码

    SM3是中华人民共和国政府采用的一种密码散列函数标准,由国家密码管理局于2010年12月17日发布.主要用于报告文件数字签名及验证. Python3代码如下: from math import ceil ############################################################################## # # 国产SM3加密算法 # #####################################################

  • python 决策树算法的实现

    ''' 数据集:Mnist 训练集数量:60000 测试集数量:10000 ------------------------------ 运行结果:ID3(未剪枝) 正确率:85.9% 运行时长:356s ''' import time import numpy as np def loadData(fileName): ''' 加载文件 :param fileName:要加载的文件路径 :return: 数据集和标签集 ''' # 存放数据及标记 dataArr = []; labelArr

  • python em算法的实现

    ''' 数据集:伪造数据集(两个高斯分布混合) 数据集长度:1000 ------------------------------ 运行结果: ---------------------------- the Parameters set is: alpha0:0.3, mu0:0.7, sigmod0:-2.0, alpha1:0.5, mu1:0.5, sigmod1:1.0 ---------------------------- the Parameters predict is: al

  • Python实现七个基本算法的实例代码

    1.顺序查找 当数据存储在诸如列表的集合中时,我们说这些数据具有线性或顺序关系. 每个数据元素都存储在相对于其他数据元素的位置. 由于这些索引值是有序的,我们可以按顺序访问它们. 这个过程产实现的搜索即为顺序查找. 顺序查找原理剖析:从列表中的第一个元素开始,我们按照基本的顺序排序,简单地从一个元素移动到另一个元素,直到找到我们正在寻找的元素或遍历完整个列表.如果我们遍历完整个列表,则说明正在搜索的元素不存在. 代码实现:该函数需要一个列表和我们正在寻找的元素作为参数,并返回一个是否存在的布尔值

  • python 密码学示例——理解哈希(Hash)算法

    Hash 是密码学安全性的基石,它引入了单向函数(one-way function)和指纹(fingerprint)的概念.即: 对于任意输入,都可以产生相同的.唯一的输出值 输出值中不包含输入值的任何线索 一.保密性(confidentiality)与完整性(integrity) 简单来说,信息的保密性确保除授权人员以外的任何人都无法读取该消息,信息的完整性则确保除授权人员以外的任何人都无法修改该消息. 很多时候一段加密的消息无法被他人读取和理解(保密性),并不意味着该密文不会在传播过程中被截

  • Python实现EM算法实例代码

    EM算法实例 通过实例可以快速了解EM算法的基本思想,具体推导请点文末链接.图a是让我们预热的,图b是EM算法的实例. 这是一个抛硬币的例子,H表示正面向上,T表示反面向上,参数θ表示正面朝上的概率.硬币有两个,A和B,硬币是有偏的.本次实验总共做了5组,每组随机选一个硬币,连续抛10次.如果知道每次抛的是哪个硬币,那么计算参数θ就非常简单了,如 下图所示: 如果不知道每次抛的是哪个硬币呢?那么,我们就需要用EM算法,基本步骤为:   1.给θ_AθA​和θ_BθB​一个初始值:   2.(E-

  • python 贪心算法的实现

    贪心算法 贪心算法(又称贪婪算法)是指,在对问题求解时,总是做出在当前看来是最好的选择.也就是说,不从整体最优上加以考虑,他所做出的是在某种意义上的局部最优解. 贪心算法不是对所有问题都能得到整体最优解,关键是贪心策略的选择,选择的贪心策略必须具备无后效性,即某个状态以前的过程不会影响以后的状态,只与当前状态有关. 基本思路 思想 贪心算法的基本思路是从问题的某一个初始解出发一步一步地进行,根据某个优化测度,每一步都要确保能获得局部最优解.每一步只考虑一个数据,他的选取应该满足局部优化的条件.若

  • python 如何实现遗传算法

    1.基本概念 遗传算法(GA)是最早由美国Holland教授提出的一种基于自然界的"适者生存,优胜劣汰"基本法则的智能搜索算法.该法则很好地诠释了生物进化的自然选择过程.遗传算法也是借鉴该基本法则,通过基于种群的思想,将问题的解通过编码的方式转化为种群中的个体,并让这些个体不断地通过选择.交叉和变异算子模拟生物的进化过程,然后利用"优胜劣汰"法则选择种群中适应性较强的个体构成子种群,然后让子种群重复类似的进化过程,直到找到问题的最优解或者到达一定的进化(运算)时间.

随机推荐