Java利用遗传算法求解最短路径问题

目录
  • 1、问题描述
  • 2、编码
  • 3、个体类
  • 4、遗传算法解决最短路径问题主方法
  • 5、适应度
  • 6、选择算子
  • 7、交叉算子
  • 8、变异算子
  • 9、总结

遗传算法(Genetic Algorithm,GA)最早是由美国的John holland于20世纪70年代提出,该算法是根据大自然中生物体进化规律而设计提出的。是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。

1、问题描述

图1所示为一个最短路径问题,每条边代表一条可以通行的弧,边上的数值表示这条弧的长度,多条弧相互连接形成路径,目标是寻找一条从节点0出发到节点5的最短路径。

2、编码

从表现型到基因型的映射称为编码。图1中每条路径的每个节点对应一个基因,通过对节点的有序组合可以将每条路径映射为一个向量。每个向量长度为6,起始和结束位置的数值分别为0和5,代表从节点0出发,到节点5终止,图1中节点间边的长度代表节点间的距离,若两节点间无边相连,则这两个节点间的距离为一个极大的数M。由于向量长度固定为6,而解中可能并不包含所有的节点,个体中可能会存在多个相邻且重复出现的节点,因此设置节点到其本身的距离为0。

3、个体类

每个个体包含路径Path和适应度length(即路径长度)两个属性,每个个体路径属性中的起点为0,结束点为5,其余位置数值随机生成(0-5范围内的整数),向量长度固定为6。个体类中定义的compareTo方法是为了用于在选择算子中采用迭代器进行个体的删除。

public class Individual implements Comparable<Individual>{
    int[] Path = new int[6];    //存储路径
    int length;                  //表示适应度

    public int[] getPath() {
        return Path;
    }

    public void setPath(int[] path) {
        Path = path;
    }

    public int getLength() {
        return length;
    }

    public void setLength(int length) {
        this.length = length;
    }

    public int compareTo(Individual o) {
        if(this.getLength() > o.getLength())
        {
            return -1;
        }
        else if(this.getLength()<o.getLength())
        {
            return 1;
        }
        else
        {
            return 0;
        }
    }

}

4、遗传算法解决最短路径问题主方法

主方法包括(1)数据的初始化(2)定义初始种群(3)循环依次调用选择、交叉和变异算子(4)输出迭代后的结果。以邻接矩阵的形式表达图1中各节点间的距离,  建立一个集合表示种群,随机产生10个个体并添加到初始种群完成种群的初始化,设置迭代次数并依次调用三个算子更新种群,最终输出结果。详细代码如下:

    static int[][] matrix = new int[6][6];
    final static int M = 10000;
    static Random rand = new Random();
    public static void main(String[] args) {
        //邻接矩阵
        matrix[0] = new int[]{0, 6, 3, M, M, M};/*1*/
        matrix[1] = new int[]{6, 0, 2, 5, M, M};/*2*/
        matrix[2] = new int[]{3, 2, 0, 3, 4, M};/*3*/
        matrix[3] = new int[]{M, 5, 3, 0, 2, 3};/*4*/
        matrix[4] = new int[]{M, M, 4, 2, 0, 5};/*5*/
        matrix[5] = new int[]{M, M, M, 3, 5, 0};/*6*/

        //定义初始种群
        Math.random();
        List<Individual> Population = new ArrayList<>();
        for (int i = 0; i < 10; i++) {
            //随机生成十个个体添加到初始种群列表
            Individual Popu = new Individual();
            Popu.Path[0] = 0;
            Popu.Path[1] = rand.nextInt(5);
            Popu.Path[2] = rand.nextInt(5);
            Popu.Path[3] = rand.nextInt(5);
            Popu.Path[4] = rand.nextInt(5);
            Popu.Path[5] = 5;
            Popu.length = M;
            Population.add(Popu);
        }

        for(int i = 0; i<2000; i++){
            System.out.println("第"+(i+1)+"次迭代开始!");
            //初始种群中选择出5个较优的个体
            List<Individual> NewSelPopu = Selection(Population);
            //交叉
            List<Individual> NewCroPopu = Crossover(NewSelPopu);
            //变异
            Population = Variation(NewCroPopu);
            System.out.println("第"+ (i+1) + "次迭代完成!");
        }

        //输出迭代后的种群
        System.out.print("2000次迭代后集合中个体的长度:");
        for(Individual a : Population){
            System.out.print(a.length +" ");
        }
        //对集合中的个体排序
        Collections.sort(Population);
        //输出排序后的集合中个体的长度
        System.out.print("\n" +"2000次迭代后所有个体的最短路径长度为:" + Population.get(9).length);
        System.out.println("\n"+"最短路径为:" + Arrays.toString(Population.get(9).Path));
    }

5、适应度

该问题中适应度即为每个个体所代表的路径长度,适应度函数如下:

static void Fitness(Individual in){
        //计算路径长度
        in.length = matrix[in.Path[0]][in.Path[1]] + matrix[in.Path[1]][in.Path[2]] +
                matrix[in.Path[2]][in.Path[3]] + matrix[in.Path[3]][in.Path[4]] + matrix[in.Path[4]][in.Path[5]];
    }

6、选择算子

输入:包含10个个体的种群。

输出:包含5个个体的种群。

计算所输入的种群的所有个体的适应度,并按照适应度将这些个体进行升序排列,删除掉其中适应度较大的五个个体,并返回剩余的种群。代码如下:

static List<Individual> Selection(List<Individual> Population){
        System.out.print("排序前集合中个体的长度:");
        for(Individual a : Population){
            System.out.print(a.length +" ");
        }
        //对集合中的个体排序
        Collections.sort(Population);
        //输出排序后的集合中个体的长度
        System.out.print("\n" +"排序后集合中个体的长度:");
        for(Individual a : Population){
            System.out.print(a.length +" ");
        }

        //使用迭代器删除个体
        Iterator<Individual> iterator = Population.iterator();
        while(iterator.hasNext() && Population.size()>5){
            Individual next = iterator.next();
            if(next != null)
                iterator.remove();
        }
        //输出删除后的个体的长度
        System.out.print("\n" + "选择后的个体的长度:");
        for(Individual a : Population){
            System.out.print(a.length +" ");
        }
        System.out.println("\n" + "选择完成!");
        return Population;
    }

7、交叉算子

输入:包含5个个体的种群。

输出:包含7个个体的种群。

在经过选择算子后生成的包含5个个体的种群中随机选择两个不同的个体,选择一个不是首也不是尾的基因,将所选择的两个个体对应的基因进行交叉,并将新产生的个体添加到种群中去,返回新的种群。代码如下:

static List<Individual> Crossover(List<Individual> NewSelPopu){
        //复制集合
        List<Individual> CroPopu = new ArrayList<>();
        for (int i = 0; i < 5; i++) {
            Individual ind = new Individual();
            System.arraycopy(NewSelPopu.get(i).Path, 0, ind.Path, 0, 6);
            ind.length = NewSelPopu.get(i).length;
            CroPopu.add(ind);
        }
        //随机选择两个不同的个体
        int i = rand.nextInt(5);
        int j = rand.nextInt(5);
        while(i == j){
            j = rand.nextInt(5);
        }
        //随机选择一个不是首尾的基因进行交叉
        int k = rand.nextInt(4) + 1;

        int l = CroPopu.get(i).Path[k];
        CroPopu.get(i).Path[k] = CroPopu.get(j).Path[k];
        CroPopu.get(j).Path[k] = l;

        //更新length并添加到集合中
        Fitness(CroPopu.get(i));
        Fitness(CroPopu.get(j));
        NewSelPopu.add(CroPopu.get(i));
        NewSelPopu.add(CroPopu.get(j));

        //输出交叉产生的个体
        System.out.println("交叉产生的个体为:" + Arrays.toString(CroPopu.get(i).Path) + "和" + Arrays.toString(CroPopu.get(j).Path));

        //输出交叉后的个体适应度
        System.out.print("交叉后的个体的长度:");
        for(Individual a : NewSelPopu){
            System.out.print(a.length +" ");
        }
        System.out.println("\n"+"交叉完成!");
        return NewSelPopu;
    }

8、变异算子

输入:包含7个个体的种群。

输出:包含10个个体的种群。

随机选择一个个体,将这个个体的随机一个不为首或尾的基因进行变异,随机产生一个[0,5]中的数值代替该基因处的数值,将变异后产生的新的个体添加到种群中。重复以上步骤三次,共计产生三个新的个体。这里需要注意的是,由于每次选择要变异的个体都是随机的,可能存在两次甚至三次选择同一个个体进行变异的情况,这也符合自然界中生物遗传的思想。代码如下:

static List<Individual> Variation(List<Individual> NewCroPopu){
        //复制集合
        List<Individual> VarPopu = new ArrayList<>();
        for (int i = 0; i < 7; i++) {
            Individual ind = new Individual();
            System.arraycopy(NewCroPopu.get(i).Path, 0, ind.Path, 0, 6);
            ind.length = NewCroPopu.get(i).length;
            VarPopu.add(ind);
        }

        //变异三次
        for (int i = 0; i < 3; i++) {
            //随机选择一个个体的一个基因进行变异
            int j = rand.nextInt(7);
            VarPopu.get(j).Path[(rand.nextInt(4) + 1)] = rand.nextInt(5);
            //更新length并添加到集合中
            Fitness(VarPopu.get(j));
            NewCroPopu.add(VarPopu.get(j));
            //输出交叉产生的个体
            System.out.println("第"+ (i+1) +"次变异产生的个体为:" + Arrays.toString(VarPopu.get(i).Path));
        }

        //输出变异后的个体适应度
        System.out.print("变异后的个体的长度:");
        for(Individual a : NewCroPopu){
            System.out.print(a.length +" ");
        }
        System.out.println("\n"+"变异完成!");
        return NewCroPopu;
    }

9、总结

本文解决的问题复杂度较低,适合代码或者遗传算法的初学者尝试解决。另外在解决该问题时,本文所采用的编码方式较为简单,虽可以很好的解决此类简单问题,但在求解更复杂的问题时可能会存在计算结果为不可行解的情况,因此在采用遗传算法解决更复杂的问题时,非常有必要对编码方式进行进一步的加工,使其更适合问题特性且计算结果更优。完整的代码如下:

import java.util.*;

public class GeneticAlgorithm {
    static int[][] matrix = new int[6][6];
    final static int M = 10000;
    static Random rand = new Random();
    public static void main(String[] args) {
        //邻接矩阵
        matrix[0] = new int[]{0, 6, 3, M, M, M};/*1*/
        matrix[1] = new int[]{6, 0, 2, 5, M, M};/*2*/
        matrix[2] = new int[]{3, 2, 0, 3, 4, M};/*3*/
        matrix[3] = new int[]{M, 5, 3, 0, 2, 3};/*4*/
        matrix[4] = new int[]{M, M, 4, 2, 0, 5};/*5*/
        matrix[5] = new int[]{M, M, M, 3, 5, 0};/*6*/

        //定义初始种群
        Math.random();
        List<Individual> Population = new ArrayList<>();
        for (int i = 0; i < 10; i++) {
            //随机生成十个个体添加到初始种群列表
            Individual Popu = new Individual();
            Popu.Path[0] = 0;
            Popu.Path[1] = rand.nextInt(5);
            Popu.Path[2] = rand.nextInt(5);
            Popu.Path[3] = rand.nextInt(5);
            Popu.Path[4] = rand.nextInt(5);
            Popu.Path[5] = 5;
            Popu.length = M;
            Population.add(Popu);
        }
        //输出初始种群
        for (int i = 0; i < 10; i++) {
            System.out.println("初始种群中第" + (i+1) + "个个体为:");
            for (int j = 0; j < 6; j++) {
                System.out.print(Population.get(i).Path[j]);
            }
            //更新length
            for (int j = 0; j < 10; j++) {
                Fitness(Population.get(j));
            }
            System.out.println("\n" +"适应度为:" +Population.get(i).length);
            System.out.println();
        }

        for(int i = 0; i<2000; i++){
            System.out.println("第"+(i+1)+"次迭代开始!");
            //初始种群中选择出5个较优的个体
            List<Individual> NewSelPopu = Selection(Population);
            //交叉
            List<Individual> NewCroPopu = Crossover(NewSelPopu);
            //变异
            Population = Variation(NewCroPopu);
            System.out.println("第"+ (i+1) + "次迭代完成!");
        }

        //输出迭代后的种群
        System.out.print("2000次迭代后集合中个体的长度:");
        for(Individual a : Population){
            System.out.print(a.length +" ");
        }
        //对集合中的个体排序
        Collections.sort(Population);
        //输出排序后的集合中个体的长度
        System.out.print("\n" +"2000次迭代后所有个体的最短路径长度为:" + Population.get(9).length);
        System.out.println("\n"+"最短路径为:" + Arrays.toString(Population.get(9).Path));
    }

    //选择函数,删除种群中较大的5个个体,返回两个所选的适应度最好的个体
    //输入:10个个体的种群
    //输出:5个个体的种群
    static List<Individual> Selection(List<Individual> Population){
        System.out.print("排序前集合中个体的长度:");
        for(Individual a : Population){
            System.out.print(a.length +" ");
        }
        //对集合中的个体排序
        Collections.sort(Population);
        //输出排序后的集合中个体的长度
        System.out.print("\n" +"排序后集合中个体的长度:");
        for(Individual a : Population){
            System.out.print(a.length +" ");
        }

        //使用迭代器删除个体
        Iterator<Individual> iterator = Population.iterator();
        while(iterator.hasNext() && Population.size()>5){
            Individual next = iterator.next();
            if(next != null)
                iterator.remove();
        }
        //输出删除后的个体的长度
        System.out.print("\n" + "选择后的个体的长度:");
        for(Individual a : Population){
            System.out.print(a.length +" ");
        }
        System.out.println("\n" + "选择完成!");
        return Population;
    }

    //交叉产生两个新的个体
    //输入:5个个体的种群
    //输出:7个个体的种群
    static List<Individual> Crossover(List<Individual> NewSelPopu){
        //复制集合
        List<Individual> CroPopu = new ArrayList<>();
        for (int i = 0; i < 5; i++) {
            Individual ind = new Individual();
            System.arraycopy(NewSelPopu.get(i).Path, 0, ind.Path, 0, 6);
            ind.length = NewSelPopu.get(i).length;
            CroPopu.add(ind);
        }
        //随机选择两个不同的个体
        int i = rand.nextInt(5);
        int j = rand.nextInt(5);
        while(i == j){
            j = rand.nextInt(5);
        }
        //随机选择一个不是首尾的基因进行交叉
        int k = rand.nextInt(4) + 1;

        int l = CroPopu.get(i).Path[k];
        CroPopu.get(i).Path[k] = CroPopu.get(j).Path[k];
        CroPopu.get(j).Path[k] = l;

        //更新length并添加到集合中
        Fitness(CroPopu.get(i));
        Fitness(CroPopu.get(j));
        NewSelPopu.add(CroPopu.get(i));
        NewSelPopu.add(CroPopu.get(j));

        //输出交叉产生的个体
        System.out.println("交叉产生的个体为:" + Arrays.toString(CroPopu.get(i).Path) + "和" + Arrays.toString(CroPopu.get(j).Path));

        //输出交叉后的个体适应度
        System.out.print("交叉后的个体的长度:");
        for(Individual a : NewSelPopu){
            System.out.print(a.length +" ");
        }
        System.out.println("\n"+"交叉完成!");
        return NewSelPopu;
    }

    //变异两个个体
    //输入:7个个体的种群
    //输出:10个个体的种群
    static List<Individual> Variation(List<Individual> NewCroPopu){
        //复制集合
        List<Individual> VarPopu = new ArrayList<>();
        for (int i = 0; i < 7; i++) {
            Individual ind = new Individual();
            System.arraycopy(NewCroPopu.get(i).Path, 0, ind.Path, 0, 6);
            ind.length = NewCroPopu.get(i).length;
            VarPopu.add(ind);
        }

        //变异三次
        for (int i = 0; i < 3; i++) {
            //随机选择一个个体的一个基因进行变异
            int j = rand.nextInt(7);
            VarPopu.get(j).Path[(rand.nextInt(4) + 1)] = rand.nextInt(5);
            //更新length并添加到集合中
            Fitness(VarPopu.get(j));
            NewCroPopu.add(VarPopu.get(j));
            //输出交叉产生的个体
            System.out.println("第"+ (i+1) +"次变异产生的个体为:" + Arrays.toString(VarPopu.get(i).Path));
        }

        //输出变异后的个体适应度
        System.out.print("变异后的个体的长度:");
        for(Individual a : NewCroPopu){
            System.out.print(a.length +" ");
        }
        System.out.println("\n"+"变异完成!");
        return NewCroPopu;
    }

    //更新适应度
    static void Fitness(Individual in){
        //计算路径长度
        in.length = matrix[in.Path[0]][in.Path[1]] + matrix[in.Path[1]][in.Path[2]] +
                matrix[in.Path[2]][in.Path[3]] + matrix[in.Path[3]][in.Path[4]] + matrix[in.Path[4]][in.Path[5]];
    }

}
public class Individual implements Comparable<Individual>{
    int[] Path = new int[6];    //存储路径
    int length;                  //表示适应度

    public int[] getPath() {
        return Path;
    }

    public void setPath(int[] path) {
        Path = path;
    }

    public int getLength() {
        return length;
    }

    public void setLength(int length) {
        this.length = length;
    }

    public int compareTo(Individual o) {
        if(this.getLength() > o.getLength())
        {
            return -1;
        }
        else if(this.getLength()<o.getLength())
        {
            return 1;
        }
        else
        {
            return 0;
        }
    }

}

运行结果如下:

第2000次迭代完成!
2000次迭代后集合中个体的长度:9 9 9 9 9 9 9 9 9 10003 
2000次迭代后所有个体的最短路径长度为:9
最短路径为:[0, 2, 2, 2, 3, 5]

由于问题比较简单,一般迭代100次左右就已经求得最优解,为保证结果的最优性,本文对进行了2000次迭代,迭代结果与上一篇文章中通过Dijkstra方法求得的最优解一致。

在进行代码的编写时也遇到了一些比较经典的问题,总结如下:

1.初始版本的选择算子中,先将每个个体的适应度属性存储到一个新建的数组中进行排序,此方法舍近求远,因此对其进行改进,采用Collections.sort()对种群中的个体进行排序。

2.初始版本的选择算子中,采用for循环和while循环的方式删除适应度大的个体,此种方式导致程序运行时出现死循环且不能很好的实现删除5个适应度大的个体的目的,for循环中每次删除个体后种群数量发生变化,程序运行会出现异常,因此对其进行改进,采用迭代器对个体进行删除。

3.在交叉和变异算子中需要对集合进行复制,由于集合名代表的是集合存储的地址,直接赋值仍然会修改原集合中的数据,因此在对集合进行深层次的复制,新建个体并将原集合中的个体属性值分别赋给新个体后添加到复制集合中去。

到此这篇关于Java利用遗传算法求解最短路径问题的文章就介绍到这了,更多相关Java求最短路径内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • java实现Dijkstra最短路径算法

    任务描述:在一个无向图中,获取起始节点到所有其他节点的最短路径描述 Dijkstra(迪杰斯特拉)算法是典型的最短路径路由算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止. Dijkstra一般的表述通常有两种方式,一种用永久和临时标号方式,一种是用OPEN, CLOSE表方式 用OPEN,CLOSE表的方式,其采用的是贪心法的算法策略,大概过程如下: 1.声明两个集合,open和close,open用于存储未遍历的节点,close用来存储

  • java实现遗传算法实例分享(打印城市信息)

    复制代码 代码如下: import java.util.*;public class Tsp {      private String cityName[]={"北京","上海","天津","重庆","哈尔滨","长春","沈阳","呼和浩特","石家庄","太原","济南","

  • java实现dijkstra最短路径寻路算法

    [引用]迪杰斯特拉(Dijkstra)算法是典型最短路径算法,用于计算一个节点到其他节点的最短路径. 它的主要特点是以起始点为中心向外层层扩展(广度优先搜索思想),直到扩展到终点为止. 基本思想 通过Dijkstra计算图G中的最短路径时,需要指定起点s(即从顶点s开始计算). 此外,引进两个集合S和U.S的作用是记录已求出最短路径的顶点(以及相应的最短路径长度),而U则是记录还未求出最短路径的顶点(以及该顶点到起点s的距离). 初始时,S中只有起点s:U中是除s之外的顶点,并且U中顶点的路径是

  • Java实现Floyd算法求最短路径

    本文实例为大家分享了Java实现Floyd算法求最短路径的具体代码,供大家参考,具体内容如下 import java.io.FileInputStream; import java.io.FileNotFoundException; import java.util.Scanner; public class TestMainIO { /** * @param args * @throws FileNotFoundException */ public static void main(Stri

  • 深入理解Java遗传算法

    关于遗传算法的详细原理以及具体的定义这里就不多介绍,想了解的可以自行百度,下面就简单介绍下自己对遗传算法的理解,本文对基因的编码采用二进制规则. 算法思想:       遗传算法参照达尔文的进化论,认为物种都是向好的方向去发展(适者生存),因此可以认为到足够的代数之后,得到的最值可实际的最值很接近. 算法步骤: 1)随机产生一个种群: 2)计算种群的适应度.最好适应度.最差适应度.平均适应度等指标: 3)验证种群代数是否达到自己设置的阈值,如果达到结束计算,否则继续下一步计算: 4)采用转盘赌法

  • Java利用遗传算法求解最短路径问题

    目录 1.问题描述 2.编码 3.个体类 4.遗传算法解决最短路径问题主方法 5.适应度 6.选择算子 7.交叉算子 8.变异算子 9.总结 遗传算法(Genetic Algorithm,GA)最早是由美国的John holland于20世纪70年代提出,该算法是根据大自然中生物体进化规律而设计提出的.是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法. 1.问题描述 图1所示为一个最短路径问题,每条边代表一条可以通行的弧,边上的数值

  • Java利用Dijkstra算法求解拓扑关系最短路径

    目录 算法简介 代码实现思路 算法思想 代码示例 算法简介 迪杰斯特拉算法(Dijkstra)是由荷兰计算机科学迪家迪杰斯特拉于1959年提出的,因此又叫狄克斯特拉算法.是从一个顶点到其余各顶点最短路劲算法,解决的是有权图中最短路径问题.迪杰斯特拉算法主要特点是从起始点开始,采用贪心算法的策略,每次遍历到始点距离最近且未访问过的顶点的邻接节点,直到扩展到终点为止. 代码实现思路 1.先初始化源节点(起始点)到其他各个拓扑节点的最短距离,可以用map存放,key为节点,value为节点到源节点的距

  • Java利用Dijkstra和Floyd分别求取图的最短路径

    目录 1 最短路径的概述 2 杰斯特拉(Dijkstra)算法 2.1 原理 2.2 案例分析 3 弗洛伊德(Floyd)算法 3.1 原理 3.2 案例分析 4 邻接矩阵加权图实现 5 邻接表加权图实现 本文详细介绍了图的最短路径的概念,然后介绍了求最短路径的两种算法:Dijkstra算法和Floyd算法的原理,最后提供了基于邻接矩阵和邻接表的图对两种算法的Java实现. 阅读本文需要一定的图的基础,如果对于图不是太明白的可以看看这篇文章:Java数据结构之图的原理与实现. 1 最短路径的概述

  • Java利用蒙特卡洛方法求解圆周率π值

    目录 一.蒙特卡洛法介绍 二.利用蒙特卡洛方法计算圆周率π 三.实现代码 MTKLExp.java MonteCarloPiData.java Circle.java 一.蒙特卡洛法介绍 蒙特·卡罗方法(Monte Carlo method),也称统计模拟方法,是一种以概率统计理论为基础的数值计算方法,常用于特定条件下的概率计算问题.蒙特卡罗是摩纳哥的著名赌城,该法为表明其随机抽样的本质而命名. 算法思路简单也好理解:比如抛一枚硬币,假设我们开始不知道正面朝上的概率是多少,却有大量的时间来将硬币

  • Matlab利用遗传算法GA求解非连续函数问题详解

    目录 遗传算法基本思想 遗传算法的主要步骤 遗传编码 二进制编码 实数编码 遗传算法流程 实际演示 遗传算法基本思想 遗传算法(Genetic Algorithm, GA)起源于对生物系统所进行的计算机模拟研究.它是模仿自然界生物进化机制发展起来的随机全局搜索和优化方法,借鉴了达尔文的进化论和孟德尔的遗传学说.其本质是一种高效.并行.全局搜索的方法,能在搜索过程中自动获取和积累有关搜索空间的知识,并自适应地控制搜索过程以求得最佳解. 遗传算法的主要步骤 (1)编码:将问题的候选解用染色体表示,实

  • Java利用 Exchanger 实现游戏中交换装备

    目录 1 Exchanger 是什么 2 Exchanger 详解 3 Exchanger 应用 1 Exchanger 是什么 JDK 1.5 开始 JUC 包下提供的 Exchanger 类可用于两个线程之间交换信息.Exchanger 对象可理解为一个包含2个格子的容器,通过调用 exchanger 方法向其中的格子填充信息,当两个格子中的均被填充信息时,自动交换两个格子中的信息,然后将交换的信息返回给调用线程,从而实现两个线程的信息交换. 功能看似简单,但这在某些场景下是很有用处的,例如

  • matlab遗传算法求解车间调度问题分析及实现源码

    目录 一.车间调度简介 1 车间调度定义 2 传统作业车间调度 二.遗传算法简介 1 遗传算法概述 2 遗传算法的特点和应用 3 遗传算法的基本流程及实现技术 3.1 遗传算法的基本流程 3.2 遗传算法的实现技术 4 遗传算法的基本原理 4.1 模式定理 4.2 积木块假设 三.部分源代码 四.运行结果 五.matlab版本及参考文献 一.车间调度简介 1 车间调度定义 车间调度是指根据产品制造的合理需求分配加工车间顺序,从而达到合理利用产品制造资源.提高企业经济效益的目的.车间调度问题从数学

  • Java利用Geotools实现不同坐标系之间坐标转换

    目录 Geotools maven配置 代码工具 使用示例 Geotools GeoTools 是一个开源的 Java GIS 工具包,可利用它来开发符合标准的地理信息系统.GeoTools 提供了 OGC (Open Geospatial Consortium) 规范的一个实现来作为他们的开发. GeoTools 被许多项目使用,包括 Web 服务,命令行工具和桌面应用程序. 核心功能 1.定义关键空间概念和数据结构的接口 Java 拓扑套件(JTS)提供的集成几何支持 使用 OGC 过滤器编

  • java 利用java反射机制动态加载类的简单实现

    如下所示: ////////////////// Load.java package org.bromon.reflect; import java.util.ArrayList; import java.util.List; public class Load implements Operator { @Override public List<?> act(List<?> params) { // TODO Auto-generated method stub List<

  • Java利用future及时获取多线程运行结果

    Future接口是Java标准API的一部分,在java.util.concurrent包中.Future接口是Java线程Future模式的实现,可以来进行异步计算. 有了Future就可以进行三段式的编程了,1.启动多线程任务2.处理其他事3.收集多线程任务结果.从而实现了非阻塞的任务调用.在途中遇到一个问题,那就是虽然能异步获取结果,但是Future的结果需要通过isdone来判断是否有结果,或者使用get()函数来阻塞式获取执行结果.这样就不能实时跟踪其他线程的结果状态了,所以直接使用g

随机推荐